14.滿足不等式lg(x+1)<lg(3-x)的所有實(shí)數(shù)x的取值范圍是(  )
A.(-∞,1)B.(-1,1)C.(-1,3)D.(1,3)

分析 直接利用對數(shù)函數(shù)的單調(diào)性把對數(shù)不等式轉(zhuǎn)化為一元一次不等式組求解.

解答 解:由lg(x+1)<lg(3-x),得$\left\{\begin{array}{l}{x+1>0}\\{3-x>0}\\{x+1<3-x}\end{array}\right.$,解得-1<x<1.
∴實(shí)數(shù)x的取值范圍是(-1,1),
故選:B.

點(diǎn)評 本題考查對數(shù)不等式的解法,關(guān)鍵是注意要使原對數(shù)式有意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{\sqrt{3}}{2}$,且經(jīng)過點(diǎn)M(4,1).直線l:y=x+m交橢圓于A,B兩不同的點(diǎn).
(1)求橢圓方程;
(2)若直線l與橢圓有兩個(gè)不同的交點(diǎn),求m的取值范圍;  
(3)若直線l不過點(diǎn)M,求證:直線MA,MB與x軸圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在單位正方體A1B1C1D1-ABCD中,E,F(xiàn),G分別是AD,BC1,A1B的中點(diǎn).
(1)求證:EF∥平面C1CDD1;
(2)求證:EG⊥平面A1BC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={x|y=$\sqrt{2-x}$},B={y|y=ln(3-x)},則A∩B( 。
A.{x|x≤2}B.{x|x<3}C.{x|2<x≤3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示:O、A、B是平面上的三點(diǎn),設(shè)向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,且|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2在平面AOB上,若P為線段AB的中垂線上任意一點(diǎn),則$\overrightarrow{OP}$•($\overrightarrow{a}$-$\overrightarrow$)的值是(  )
A.$\frac{5}{2}$B.5C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lgkx,g(x)=lg(x+1),h(x)=$\frac{x}{{x}^{2}+1}$.
(1)當(dāng)k=1時(shí),求函數(shù)y=f(x)+g(x)的單調(diào)區(qū)間;
(2)若方程f(x)=2g(x)僅有一個(gè)實(shí)根,求實(shí)數(shù)k的取值集合;
(3)設(shè)p(x)=h(x)+$\frac{mx}{1+x}$在區(qū)間(-1,1)上有且僅有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列每組表示同一集合的是(  )
A.M={2,3},S={(2,3)}
B.M={π},S={3.14}
C.M={0},S=∅
D.M={1,2,3,…,n-1,n},S={前n個(gè)非零自然數(shù)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=f(x)+2x是偶函數(shù),g(x)=f(x)+x2,g(1)=3,則g(-1)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,角A,B,C的對邊分別為a,b,c,且2cos2$\frac{A-B}{2}$cosB-sin(A-B)sinB+cos(A+C)=-$\frac{3}{5}$,a=4$\sqrt{2}$,b=5,則向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊答案