如圖,正三棱柱ABC—A1B1C1的各棱長都相等,M、E分別是和AB1的中點,點F在BC上且滿足BF∶FC=1∶3.
(1)求證:BB1∥平面EFM;
(2)求四面體的體積.
(1)見解析;(2).
解析試題分析:(1)要證線面平行,一般是在平面內找(證)一條直線與待證直線平行,然后由線面平行的判定定理可得結論,本題中平行線很容易找到,因為都是相應線段上的中點,因此顯然有∥.(2)三棱錐的體積公式是,由于三梭錐的四個面都是三角形,故我們可以恰當?shù)剡x取底面,以使得高易求(即熟知的換底法),本題中三梭錐,我們就可以以為底,而這時高就是,而高的垂直的證明可由正三梭錐的定義證得.
試題解析:(1)證明:連結EM、MF,∵M、E分別是正三棱柱的棱AB和AB1的中點,
∴BB1∥ME, 3分
又BB1平面EFM,∴BB1∥平面EFM. 6分
(2)正三棱柱中,由(1),所以, 8分
根據(jù)條件得出,所以,10分
又,因此. 12分
考點:(1)線面平行;(2)棱錐的體積.
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45,點E、F分別為棱AB、PD的中點.
(1)求證:AF∥平面PCE;
(2)求三棱錐C-BEP的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,PA平面ABCD,四邊形ABCD為矩形,PA=AB=,AD=1,點F是PB的中點,點E在邊BC上移動.
(I)求三棱錐E—PAD的體積;
(II)試問當點E在BC的何處時,有EF//平面PAC;
(1lI)證明:無論點E在邊BC的何處,都有PEAF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知半徑為的球內有一個內接正方體(即正方體的頂點都在球面上).
(1)求此球的體積;
(2)求此球的內接正方體的體積;
(3)求此球的表面積與其內接正方體的全面積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一個多面體的直觀圖、正視圖、側視圖、俯視圖如圖所示,M、N分別為A1B、B1C1的中點.
(1)求證:MN//平面ACC1A1;
(2)求證:MN^平面A1BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com