【題目】橢圓的兩個焦點坐標分別為F1(-,0)和F2(,0),且橢圓過點
(1)求橢圓方程;
(2)過點作不與y軸垂直的直線l交該橢圓于M,N兩點,A為橢圓的左頂點,證明.
科目:高中數學 來源: 題型:
【題目】已知向量 =(cosx+sinx,2sinx), =(cosx﹣sinx,cosx).令f(x)= .
(1)求f(x)的最小正周期;
(2)求f(x)在[ , ]上的單調遞增區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sinxcosx+2 cos2x﹣
(1)求函數f(x)的最小正周期和單調減區(qū)間;
(2)已知△ABC的三個內角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f( ﹣ )= ,且sinB+sinC= ,求bc的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知遞增等比數列{an}滿足:a2+a3+a4=28,且a3+2是a2和a4的等差中項,
(1)求數列{an}的通項公式;
(2)若 ,Sn=b1+b2+…+bn , 求使Sn+n2n+1>62成立的正整數n的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=ax3﹣3x2+1(a>0),定義h(x)=max{f(x),g(x)}= .
(1)求函數f(x)的極值;
(2)若g(x)=xf'(x),且存在x∈[1,2]使h(x)=f(x),求實數a的取值范圍;
(3)若g(x)=lnx,試討論函數h(x)(x>0)的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓.
(Ⅰ)若圓的切線在軸和軸上的截距相等,求此切線的方程;
(Ⅱ)從圓外一點向該圓引一條切線,切點為,為坐標原點,且,求使取得最小值的點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩點M(﹣3,0),N(3,0),點P為坐標平面內一動點,且,則動點P(x,y)到兩點A(﹣3,0)、B(﹣2,3)的距離之和的最小值為( 。
A. 4 B. 5 C. 6 D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設S為復數集C的非空子集.如果
(1)S含有一個不等于0的數;
(2)a,b∈S,a+b,a﹣b,ab∈S;
(3)a,b∈S,且b≠0,∈S,那么就稱S是一個數域.
現有如下命題:
①如果S是一個數域,則0,1∈S;
②如果S是一個數域,那么S含有無限多個數;
③復數集是數域;
④S={a+b|a,b∈Q,}是數域;
⑤S={a+bi|a,b∈Z}是數域.
其中是真命題的有 (寫出所有真命題的序號).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com