A. | (9,10) | B. | (1,9) | C. | (0,9) | D. | (9,11) |
分析 設(shè)P(6+cosθ,8+sinθ),則$\overrightarrow{PA}$=(-m-6-cosθ,-8-sinθ),$\overrightarrow{PB}$=(m-6-cosθ,-8-sinθ),由對圓上任意一點P,都有∠APB<90°,得到$\overrightarrow{PA}•\overrightarrow{PB}$>0,由此能求出m的取值范圍.
解答 解:圓C:(x-6)2+(y-8)2=1的圓心C(6,8),半徑r=1,
設(shè)P(6+cosθ,8+sinθ),
∵A(-m,0),B(m,0)(m>0),
∴$\overrightarrow{PA}$=(-m-6-cosθ,-8-sinθ),$\overrightarrow{PB}$=(m-6-cosθ,-8-sinθ),
∵對圓上任意一點P,都有∠APB<90°,
∴$\overrightarrow{PA}•\overrightarrow{PB}$=(-m-6-cosθ)(m-6-cosθ)+(-8-sinθ)2
=101+16sinθ+12cosθ-m2=20sin(θ+α)+101-m2>0.(tanα=$\frac{3}{4}$),
∴m2<20sin(θ+α)+101,
由m>0,解得9<m<11.
故選:D.
點評 本題考查實數(shù)值取值范圍的求法,涉及到圓、直線方程、向量、三角函數(shù)等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | 8 | C. | 4 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com