10.?dāng)?shù)列{an}的通項(xiàng)an是關(guān)于x的不等式x2-x<nx(n∈N*)的解集中的整數(shù)個(gè)數(shù),則數(shù)列{an}的前n項(xiàng)和Sn=(  )
A.n2B.n(n+1)C.$\frac{n(n+1)}{2}$D.(n+1)(n+2)

分析 通過(guò)解不等式求出數(shù)列{an}的通項(xiàng)an判斷數(shù)列{an}是什么數(shù)列,即可數(shù)列{an}的前n項(xiàng)和Sn

解答 解:不等式x2-x<nx(n∈N*)的解集為{x|0<x<n+1}
∵通項(xiàng)an是解集中的整數(shù)個(gè)數(shù)
∴an=n(n∈N*
∵an+1-an=n+1-n=1(常數(shù)),
∴數(shù)列{an}是首先為1,公差為1的等差數(shù)列.
∴前n項(xiàng)和Sn=$\frac{n(n+1)}{2}$.
故選C

點(diǎn)評(píng) 本題主要考查數(shù)列通項(xiàng)公式和前n項(xiàng)和的求解,求解不等式的解集中的整數(shù)個(gè)數(shù)得到an是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知圓C:x2+y2+4x-4ay+4a2+1=0,直線l:ax+y+2a=0.
(1)當(dāng)$a=\frac{3}{2}$時(shí),直線l與圓C相較于A,B兩點(diǎn),求弦AB的長(zhǎng);
(2)若a>0且直線l與圓C相切,求圓C關(guān)于直線l的對(duì)稱(chēng)圓C'的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,OABC是四面體,G是△ABC的重心,G2是OG上一點(diǎn),且OG=3OG1,則( 。
A.$\overrightarrow{O{G_1}}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$B.$\overrightarrow{O{G_1}}=\frac{1}{9}\overrightarrow{OA}+\frac{1}{9}\overrightarrow{OB}+\frac{1}{9}\overrightarrow{OC}$
C.$\overrightarrow{O{G_1}}=\frac{1}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$D.$\overrightarrow{O{G_1}}=\frac{3}{4}\overrightarrow{OA}+\frac{3}{4}\overrightarrow{OB}+\frac{3}{4}\overrightarrow{OC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在長(zhǎng)方體ABCD-A1B1C1D1中,A1A=AB=2BC=2,則異面直線AC與BD1所成角的余弦值是( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{5}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{1}{3}$x3-mx2+x+2有兩個(gè)極值點(diǎn),則m的取值范圍是( 。
A.(-1,1)B.[-1,1]C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知A={x|x≤5,x∈N},B={x|1<x<9,x∈N},則A∩B的非空子集共有15個(gè),A∪B的真子集個(gè)數(shù)為511.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn,若a5=2a3+a4,且S5=62.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某校高三共有2000名學(xué)生參加廣安市聯(lián)考,現(xiàn)隨機(jī)抽取100名學(xué)生的成績(jī)單(單位:分),并列成如表所示的頻數(shù)分布表:
組別[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)6182826175
(1)試估計(jì)該年級(jí)成績(jī)≥80分的學(xué)生人數(shù);
(2)已知樣本在成績(jī)?cè)赱40,50)中的6名學(xué)生中,有4名男生,2名女生,現(xiàn)從中選2人進(jìn)行調(diào)研,求恰好選中一名男生一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.y=lg(x+1)B.y=tanxC.y=2-xD.y=x-2

查看答案和解析>>

同步練習(xí)冊(cè)答案