3.要從n名學(xué)生組成的小組中任意選派3人去參加社會(huì)實(shí)踐活動(dòng),若在男生甲被選中的情況下,女生乙也被選中的概率為0.25,則n的值為( 。
A.6B.7C.8D.9

分析 利用在男生甲被選中的情況下,女生乙也被選中的概率為0.25,建立方程,即可求n的值.

解答 解:由題意,在男生甲被選中的情況下,只需要從其余n-1人中選出2人,
在男生甲被選中的情況下,女生乙也被選中,即從其余n-2人中選1人即可,
故 $\frac{{C}_{n-2}^{1}}{{C}_{n-1}^{2}}$=0.25,
∴n=9,
故選:D.

點(diǎn)評(píng) 本題考查條件概率,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個(gè)底面邊長(zhǎng)為2的正四棱柱截去一部分得到一個(gè)幾何體,該幾何體的三視圖如圖所示,若該幾何體的體積為13,則圖中x的值為( 。
A.2.5B.3C.2D.1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.過點(diǎn)P(3,3)作圓C:(x-1)2+(y-1)2=1的兩條切線,切點(diǎn)分別為A,B,則直線AB的方程為2x+2y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為2,高為3,點(diǎn)P為側(cè)棱BB1上一點(diǎn),則三棱錐A-CPC1的體積是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.有6位同學(xué)報(bào)名參加三個(gè)數(shù)學(xué)課外活動(dòng)小組,每位同學(xué)限報(bào)其中一個(gè)小組,則不同的報(bào)名方法共有( 。
A.36B.63C.$A_6^3$D.$C_6^3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.由y=$\frac{1}{x}$,x軸及x=1,x=2圍成的圖形的面積為(  )
A.ln2B.lg2C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)若雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1的離心率e∈(1,2),求實(shí)數(shù)m的取值范圍;
(2)若方程$\frac{{x}^{2}}{2t}$-$\frac{{y}^{2}}{t-1}$=1表示橢圓,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知⊙O和⊙M相交于A,B兩點(diǎn),AD為⊙M的直徑,直線BD交⊙O于點(diǎn)C,點(diǎn)G為弧$\widehat{BD}$中點(diǎn),連接AG分別交⊙O,BD于點(diǎn)E,F(xiàn),連接CE.
(1)求證:CE∥DG;
(2)求證:$\frac{AG}{DG}$=$\frac{CE}{EF}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知拋物線E:y2=2px(p>0)的焦點(diǎn)F恰好與圓C:x2+y2-2x=0的圓心重合,過焦點(diǎn)F的直線l與拋物線E交于不同的兩點(diǎn)A,B.
(Ⅰ)求拋物線E的方程;
(Ⅱ)若O是坐標(biāo)原點(diǎn),試問$\overrightarrow{OA}$•$\overrightarrow{OB}$是否為一定值?若是定值,請(qǐng)求出,否則請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案