15.(1)若雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1的離心率e∈(1,2),求實數(shù)m的取值范圍;
(2)若方程$\frac{{x}^{2}}{2t}$-$\frac{{y}^{2}}{t-1}$=1表示橢圓,求實數(shù)t的取值范圍.

分析 (1)求得雙曲線的a,b,c,由離心率公式e=$\frac{c}{a}$,結合條件解不等式即可得到所求范圍;
(2)將方程化為標準方程,由題意可得2t>0,1-t>0,且2t≠1-t,解不等式即可得到所求范圍.

解答 解:(1)雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1的a=$\sqrt{5}$,b=$\sqrt{m}$,
c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5+m}$,
可得e=$\frac{c}{a}$=$\frac{\sqrt{5+m}}{\sqrt{5}}$,
由1<$\frac{\sqrt{5+m}}{\sqrt{5}}$<2,解得0<m<15.
則m的取值范圍是(0,15);
(2)方程$\frac{{x}^{2}}{2t}$-$\frac{{y}^{2}}{t-1}$=1表示橢圓,
即有方程為$\frac{{x}^{2}}{2t}$+$\frac{{y}^{2}}{1-t}$=1,
可得2t>0,1-t>0,且2t≠1-t,
即0<t<1,且t≠$\frac{1}{3}$,
則實數(shù)t的取值范圍為(0,$\frac{1}{3}$)∪($\frac{1}{3}$,1).

點評 本題考查雙曲線和橢圓的方程和性質,主要是離心率,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)f(x)=sinωx(ω>0)的圖象在y軸右邊的對稱軸與其交點從左向右依次記為在點列A1、A2、A3、…、An、…在點列{An}中存在不同三點Ak、Ai、Ap,使得△AkAiAp是等腰直角三角形,將滿足上述條件的ω值從小到大組成的數(shù)列記為{ωn}.則ω2016=$\frac{4031π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.不等式$\frac{1}{x}$>3的解集是(0,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.要從n名學生組成的小組中任意選派3人去參加社會實踐活動,若在男生甲被選中的情況下,女生乙也被選中的概率為0.25,則n的值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)滿足f(logax)=$\frac{a}{{{a^2}-1}}$(x-x-1),其中a>0,a≠1,
(1)討論f(x)的奇偶性和單調性;
(2)對于函數(shù)f(x),當x∈(-1,1)時,f(1-m)+f(-2m)<0,求實數(shù)m取值的集合;
(3)是否存在實數(shù)a,使得當x∈(-∞,2)時f(x)的值恒為負數(shù)?,若存在,求a的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設a=${∫}_{0}^{π}$(sinx-1+2cos2$\frac{x}{2}$)dx,則(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展開式中常數(shù)項是-1280.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.若2a=3b=100,求$\frac{1}{a}+\frac{1}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.一個幾何體的三視圖如圖所示,正視圖、側視圖和俯視圖都是等腰直角三角形,則該幾何體的體積為( 。
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}的前n項和為Sn,滿足3an-2Sn-1=0.
(1)求數(shù)列{an}的通項公式;
(2)bn=$\frac{n(2{S}_{n}+1)}{{a}_{n}}$,數(shù)列{bn}的前n項和為Tn,求f(n)=$\frac{_{n}}{{T}_{n}+24}$(n∈N+)的最大值.

查看答案和解析>>

同步練習冊答案