【題目】正項等差數(shù)列{an}滿足a1=4,且a2,a4+2,2a7-8成等比數(shù)列,{an}的前n項和為Sn.

(1)求數(shù)列{an}的通項公式;

(2)令,求數(shù)列{bn}的前n項和Tn.

【答案】(1);(2)

【解析】試題分析:(1)根據(jù)等比數(shù)列性質得關于公差d的方程,解得d=2,再代入等差數(shù)列通項公式即得(2)先求等差數(shù)列前n項和,再利用裂項相消法求數(shù)列{bn}的前n項和Tn.

試題解析:(1)設數(shù)列{an}的公差為d(d>0),

由已知得a2(2a7-8)=(a4+2)2,

化簡得d2+4d-12=0,解得d=2或d=-6(舍).

所以ana1+(n-1)d=2n+2.

(2)因為Snn2+3n,

所以bn,

所以Tnb1b2b3+…+bn

=()+()+()+…+()

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為, 直線過點.

(Ⅰ)若點到直線的距離為, 求直線的斜率;

(Ⅱ)為拋物線上兩點, 不與軸垂直, 若線段的垂直平分線恰過點, 求證: 線段中點的橫坐標為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市擬招商引資興建一化工園區(qū),新聞媒體對此進行了問卷調查,在所有參與調查的市民中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如表所示:

支持

保留

不支持

30歲以下

900

120

280

30歲以上(含30歲)

300

260

140

(Ⅰ)在所有參與調查的人中,用分層抽樣的方法抽取部分市民做進一步調研(不同態(tài)度的群體中亦按年齡分層抽樣),已知從“保留”態(tài)度的人中抽取了19人,則在“支持”態(tài)度的群體中,年齡在30歲以上的人有多少人被抽取;

(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取6人做進一步的調研,將此6人看作一個總體,在這6人中任意選取2人,求至少有1人在30歲以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐A-BCDE中,側棱AD⊥底面BCDE,底面BCDE是直角梯形,DE∥BC,BC⊥CD,BC=2AD=2DC=2DE=4,H,I分別是AD,AE的中點.

(Ⅰ)在AB上求作一點F,BC上求作一點G,使得平面FGI∥平面ACD;

(Ⅱ)求平面CHI將四棱錐A-BCDE分成的兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機抽取100位員工進行調查,得到如下的頻率分布直方圖:

(1)試由此圖估計該公司員工的月平均工資;

(2)該公司工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認為,工資低于4500。元的員工屬于學徒階段,沒有營銷經(jīng)驗,若進行營銷將會失敗;高于4500元的員工是具備營銷成熟員工,基進行營銷將會成功,F(xiàn)將該樣本按照“學徒階段工資”、“成熟員工工資”分成兩層,進行分層抽樣,從中抽出5人,在這5人中任選2人進行營銷活動;顒又校课粏T工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元。試問在此次比賽中公司收入多少萬元的可能性最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)ln xaxb.

(1)若函數(shù)g(x)f(x)為減函數(shù),求實數(shù)a的取值范圍;

(2)f(x)0恒成立,證明:a1b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

1)討論函數(shù)的單調性;

2)當時,試判斷函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題共12分)

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,ADC=90°,平面PAD底面ABCD,QAD的中點,M是棱PC上的點,PA=PD=2BC=AD=1,CD=

1)求證:平面PQB平面PAD;

2)若二面角M-BQ-C30°,設PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB4AD2,EDC邊上,且DE1,將△ADE沿AE折到△ADE的位置,使得平面ADE⊥平面ABCE.

(1)求證:AEBD;

(2)求三棱錐ABCD的體積.

查看答案和解析>>

同步練習冊答案