分析 由條件利用同角三角函數(shù)的基本關系求得sin(($\frac{π}{3}$+α)的值,再利用兩角差的余弦公式,求得cosα=cos[($\frac{π}{3}$+α)-$\frac{π}{3}$]的值.
解答 解:∵0<α<$\frac{π}{2}$,cos($\frac{π}{3}$+α)=$\frac{1}{3}$,∴$\frac{π}{3}$+α仍然是銳角,
∴sin(($\frac{π}{3}$+α)=$\sqrt{{1-cos}^{2}(\frac{π}{3}+α)}$=$\frac{2\sqrt{2}}{3}$,
則cosα=cos[($\frac{π}{3}$+α)-$\frac{π}{3}$]=cos($\frac{π}{3}$+α)cos$\frac{π}{3}$+sin($\frac{π}{3}$+α)sin$\frac{π}{3}$
=$\frac{1}{3}•\frac{1}{2}$+$\frac{2\sqrt{2}}{3}•\frac{\sqrt{3}}{2}$=$\frac{2\sqrt{6}+1}{6}$,
故答案為:$\frac{2\sqrt{6}+1}{6}$.
點評 本題主要考查同角三角函數(shù)的基本關系,兩角差的余弦公式的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在回歸分析中,變量間的關系若是非確定性關系,那么因變量不能由自變量唯一確定 | |
B. | 線性相關系數(shù)可以是正的也可以是負的 | |
C. | 在回歸分析中,如果r2=1或r=±1,說明x與y之間完全線性相關 | |
D. | 樣本相關系數(shù)r∈(-1,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{5}}}{10}$ | C. | $\frac{{\sqrt{10}}}{10}$ | D. | $\frac{{\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | g(m)<0<f(n) | B. | f(n)<0<g(m) | C. | 0<g(m)<f(n) | D. | f(n)<g(m)<0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com