A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{5}}}{10}$ | C. | $\frac{{\sqrt{10}}}{10}$ | D. | $\frac{{\sqrt{10}}}{5}$ |
分析 由A1B⊥平面B1CD可知E為A1C的中點(diǎn),作出線面角,利用勾股定理即可求出所求角的真切值.
解答 解:連結(jié)A1C,A1B,取A1C的中點(diǎn)E,連結(jié)DE,BE,
∵AC⊥AB,AC⊥AA1,∴AC⊥平面AA1B1B,∴AC⊥A1B.
∵AB=AA1,∴四邊形AA1B1B是正方形,∴A1B⊥B1A,
∴A1B⊥平面B1CD,
∵D為BC的中點(diǎn),E為A1C的中點(diǎn),∴DE∥A1B,
∴DE⊥平面B1CD.
取A1A的中點(diǎn)F,連結(jié)EF,BF,則EF⊥平面AA1B1B,
∴∠EBF為BE與平面ABB1A1所成角.
∵EF=$\frac{1}{2}AC$=$\frac{\sqrt{2}}{2}$,AF=$\frac{1}{2}A{A}_{1}$=1,AB=2,
∴BF=$\sqrt{5}$,∴tan∠EBF=$\frac{EF}{BF}$=$\frac{\sqrt{10}}{10}$.
故選C.
點(diǎn)評(píng) 本題考查了線面垂直的判定,線面角的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1或2 | B. | 1或3 | C. | 2或3 | D. | 2或4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4-3i | B. | 4+3i | C. | 3-4i | D. | 3+4i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | -4 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{{\sqrt{14}}}{4}$ | C. | $\sqrt{3}$或 $\frac{{\sqrt{14}}}{4}$ | D. | $\frac{{\sqrt{14}}}{4}$或3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com