【題目】某公司有五輛汽車,其中兩輛汽車的車牌尾號均為1. 兩輛汽車的車牌尾號均為2, 車的車牌尾號為6,已知在非限行日,每輛車可能出車或不出車, 三輛汽車每天出車的概率均為, 兩輛汽車每天出車的概率均為,且五輛汽車是否出車相互獨(dú)立,該公司所在地區(qū)汽車限行規(guī)定如下:

車牌尾號

0和5

1和6

2和7

3和8

4和9

限行日

星期一

星期二

星期三

星期四

星期五

(1)求該公司在星期一至少有2輛汽車出國的概率;

(2)設(shè)表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求的分布列及期望.

【答案】(1);(2)見解析.

【解析】試題分析:(1)記事件 “該公司在星期一至少有輛車出車”,利用獨(dú)立重復(fù)試驗(yàn)的概率的乘法,轉(zhuǎn)化求解即可;(2)的可能取值為,求出概率,得到分布列,然后求解期望即可.

試題解析:(1)記事件 “該公司在星期一至少有2輛車出車”,

;

(2)的可能取值為0,1,2,3,4,5

的分布列為

0

1

2

3

4

5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且.若對任意的 都有.

(1)用函數(shù)單調(diào)性的定義證明: 在定義域上為增函數(shù);

(2)若,求的取值范圍;

(3)若不等式對所有的 都恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求與直線3x-4y+7=0平行,且在兩坐標(biāo)軸上截距之和為1的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為.曲線的參數(shù)方程是為參數(shù)).

(1)求直線和曲線的普通方程;

(2)設(shè)直線和曲線交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體ABCDA1B1C1D1中,MN分別是A1B1、B1C1的中點(diǎn),問:

(1)AMCN是否是異面直線?說明理由;

(2)D1BCC1是否是異面直線?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面程序的功能是(  )

A. 1×2×3×4×…×10 00的值

B. 2×4×6×8×…×10 000的值

C. 3×5×7×9×…×10 001的值

D. 求滿足1×3×5×…×n10 000的最小正整數(shù)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次招聘中,主考官要求應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,并獨(dú)立完成所抽取的3道題。甲能正確完成其中的4道題,乙能正確完成每道題的概率為,且每道題完成與否互不影響。

⑴記所抽取的3道題中,甲答對的題數(shù)為X,則X的分布列為____________;

⑵記乙能答對的題數(shù)為Y,則Y的期望為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了了解高三學(xué)生每天自主學(xué)習(xí)中國古典文學(xué)的時(shí)間,隨機(jī)抽取了高三男生和女生各50名進(jìn)行問卷調(diào)查,其中每天自主學(xué)習(xí)中國古典文學(xué)的時(shí)間超過3小時(shí)的學(xué)生稱為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:

古文迷

非古文迷

合計(jì)

男生

26

24

50

女生

30

20

50

合計(jì)

56

44

100

(1)根據(jù)表中數(shù)據(jù)判斷能否有的把握認(rèn)為“古文迷”與性別有關(guān)?

(2)先從調(diào)查的女生中按分層抽樣的方法抽出5人進(jìn)行理科學(xué)習(xí)時(shí)間的調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);

(3)現(xiàn)從(2)中所抽取的5人中再隨機(jī)抽取3人進(jìn)行體育鍛煉時(shí)間的調(diào)查,記這3人中“古文迷”的人數(shù)為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

參考數(shù)據(jù):

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.321

3.841

5.024

6.635

參考公式: ,其中

查看答案和解析>>

同步練習(xí)冊答案