分析 利用等差數(shù)列的前n項和公式求出a3+a8=8,由此利用基本不等式的性質(zhì)能求出a3•a8的最大值.
解答 解:∵正項等差數(shù)列{an}的前n項和為Sn,S10=40,
∴$\left\{\begin{array}{l}{{a}_{3}>0}\\{{a}_{8}>0}\\{{a}_{3}+{a}_{8}=40×\frac{2}{10}=8}\end{array}\right.$,
∴${a}_{3}{a}_{8}≤(\frac{{a}_{3}+{a}_{8}}{2})^{2}$=16.
∴當且僅當a3=a8時,a3•a8的最大值為64.
故答案為:16.
點評 本題考查等差數(shù)列中兩項積的最大值的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的性質(zhì)及基本等式的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,+∞) | B. | $[{\frac{1}{2},1}]$ | C. | $[{\frac{2}{3},+∞})$ | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2,4 | B. | 2,5 | C. | 0,4 | D. | 0,5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 100 |
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}π$ | B. | 4$\sqrt{3}$π | C. | $\frac{4\sqrt{3}}{3}$π | D. | 8$\sqrt{3}$π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com