2.蒙特卡洛方法的思想如下:當(dāng)所求解的問題是某種隨機(jī)事件=出現(xiàn)的概率時,通過某種“試驗(yàn)”方法,以這種事件出現(xiàn)的頻率估計(jì)這一隨機(jī)事件的概率,并將其作為問題的解.現(xiàn)為了估計(jì)右圖所示的陰影部分面積的大小,使用蒙特卡洛方法的思想,向面積為16的矩形OABC內(nèi)投擲800個點(diǎn),其中恰有180個點(diǎn)落在陰影部分內(nèi),則可估計(jì)陰影部分的面積為( 。
A.3.6B.4C.12.4D.無法確定

分析 由向面積為16的矩形OABC內(nèi)投擲800個點(diǎn),其中恰有180個點(diǎn)落在陰影部分內(nèi),可得$\frac{180}{800}=\frac{{S}_{陰}}{16}$,即可估計(jì)陰影部分的面積.

解答 解:∵向面積為16的矩形OABC內(nèi)投擲800個點(diǎn),其中恰有180個點(diǎn)落在陰影部分內(nèi),
∴$\frac{180}{800}=\frac{{S}_{陰}}{16}$,
∴S=3.6.
故選:A.

點(diǎn)評 本題考查模擬方法估計(jì)概率,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若(2x-3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5
(1)求a0-a1+a2-a3+a4-a5的值;
(2)求a1+2a2+3a3+4a4+5a5的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.定義運(yùn)算a?b=$\frac{a+b-|a-b|}{2}$,則當(dāng)a=3+log${\;}_{\frac{1}{4}}$x,b=log2x時,函數(shù)f(x)=a?b的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知正數(shù)a,b滿足ab≥a+b+8則a+b的最小值為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)P是拋物線上橫坐標(biāo)為3的點(diǎn),且P到拋物線焦點(diǎn)F的距離等于4.
(1)求拋物線的方程;
(2)過拋物線的焦點(diǎn)F作互相垂直的兩條直線l1,l2,l1與拋物線交于A、B兩點(diǎn),l2與拋物線交于C、D兩點(diǎn),M、N分別是線段AB、CD的中點(diǎn),求△FMN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知某圓錐體的底面半徑r=3,沿圓錐體的母線把側(cè)面展開后得到一個圓心角為$\frac{2}{3}π$的扇形,則該圓錐體的表面積是36π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.正方體ABCD-A′B′C′D′中,AB′與A′C′所在直線的夾角為( 。
A.30°B.60°C.90°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知在三棱錐P-ABC中,AP=AB=AC=1,BC=PB=PC=$\sqrt{2}$,頂點(diǎn)都在一個球面上,則該球的表面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知三個函數(shù):①f(x)=x3,②f(x)=tanx,③f(x)=xsinx,其圖象能將圓O:x2+y2=1的面積等分的函數(shù)的個數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

同步練習(xí)冊答案