【題目】已知點M(﹣1,0),N(1,0),曲線E上任意一點到點M的距離均是到點N的距離的倍.

(1)求曲線E的方程;

(2)已知m≠0,設(shè)直線xmy﹣1=0交曲線EA,C兩點,直線mx+ym=0交曲線EB,D兩點,若CD的斜率為﹣1時,求直線CD的方程.

【答案】(1)(x﹣2)2+y2=3.(2)y=﹣x,或y=﹣x+3.

【解析】試題分析:(1)根據(jù)已知條件布列(x,y)的方程,化簡得:(x﹣2)2+y2=3;(2)由題易知:l1⊥l2,且兩條直線均恒過點N(1,0),結(jié)合圓的幾何性質(zhì)求得直線CD的方程.

試題解析:

解:(1)設(shè)曲線E上任意一點坐標為(x,y),

由題意,,

整理得x2+y2﹣4x+1=0,即(x﹣2)2+y2=3,

∴曲線E的方程為(x﹣2)2+y2=3.

(2)由題知l1⊥l2,且兩條直線均恒過點N(1,0),

設(shè)曲線E的圓心為E,則E(2,0),線段CD的中點為P,

則直線EP:y=x﹣2,設(shè)直線CD:y=﹣x+t,

,解得點,

由圓的幾何性質(zhì),,

,|ED|2=3,

解之得t=0,或t=3,

∴直線CD的方程為y=﹣x,或y=﹣x+3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)S是實數(shù)集R的非空子集,若對任意x,yS,都有xy,xyxyS,則稱S為封閉集.下列命題:①集合S={ab|a,b為整數(shù)}為封閉集;②若S為封閉集,則一定有0∈S;③封閉集一定是無限集;④若S為封閉集,則滿足STR的任意集合T也是封閉集.其中真命題是________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中 為自然對數(shù)的底數(shù)).

1)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

2)設(shè),若函數(shù)對任意都成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, ,

(1)求證: 平面

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·黃岡質(zhì)檢)設(shè)等比數(shù)列{an}的各項均為正數(shù),公比為q,前n項和為Sn.若對任意的n∈N*,有S2n<3Sn,則q的取值范圍是(  )

A. (0,1] B. (0,2)

C. [1,2) D. (0, )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表:

表1:某年部分日期的天安門廣場升旗時刻表

日期

升旗時刻

日期

升旗時刻

日期

升旗時刻

日期

升旗時刻

1月1日

7:36

4月9日

5:46

7月9日

4:53

10月8日

6:17

1月21日

7:11

4月28日

5:19

7月27日

5:07

10月26日

6:36

2月10日

7:14

5月16日

4:59

8月14日

5:24

11月13日

6:56

3月2日

6:47

6月3日

4:47

9月2日

5:42

12月1日

7:16

3月22日

6:15

6月22日

4:46

9月20日

5:50

12月20日

7:31

表2:某年1月部分日期的天安門廣場升旗時刻表

日期

升旗時刻

日期

升旗時刻

日期

升旗時刻

2月1日

7:23

2月11日

7:13

2月21日

6:59

2月3日

7:22

2月13日

7:11

2月23日

6:57

2月5日

7:20

2月15日

7:08

2月25日

6:55

2月7日

7:17

2月17日

7:05

2月27日

6:52

2月9日

7:15

2月19日

7:02

2月28日

6:49

(1)從表1的日期中隨機選出一天,試估計這一天的升旗時刻早于7:00的概率;

(2)甲、乙二人各自從表2的日期中隨機選擇一天觀看升旗,且兩人的選擇相互獨立,記為這兩人中觀看升旗的時刻早于7:00的人數(shù),求的 分布列和數(shù)學(xué)期望;

(3)將表1和表2的升旗時刻化為分數(shù)后作為樣本數(shù)據(jù)(如7:31化為),記表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,表1和表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,判斷的大小(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中, 是線段的中點,且 平面

(Ⅰ)求證:平面平面

(Ⅱ)求證: 平面;

(Ⅲ)若 ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的四個頂點組成的四邊形的面積為,且經(jīng)過點

1求橢圓的方程;

2若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于兩點,與交于點,四邊形的面積分別為的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內(nèi),每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關(guān)系式近似為y 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.

(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?

(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).

查看答案和解析>>

同步練習(xí)冊答案