【題目】已知函數(shù) ,其中 為自然對數(shù)的底數(shù)).

1)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

2)設(shè),若函數(shù)對任意都成立,求的最大值.

【答案】(1) 當(dāng)時,增區(qū)間為 ;當(dāng)時,增區(qū)間為,減區(qū)間為 ;(2) .

【解析】試題分析:(1)通過函數(shù),得,然后結(jié)合0的關(guān)系對a的正負進行討論即可;(2)對a的正負進行討論:當(dāng)a<0時, 不可能恒成立;當(dāng)a=0時,此時ab=0;當(dāng)a0時,由題結(jié)合(1)得,設(shè),問題轉(zhuǎn)化為求的最大值,利用導(dǎo)函數(shù)即可.

試題解析::(1)由函數(shù),可知,

時, ,函數(shù)R上單調(diào)遞增;

當(dāng)時,令,得

故當(dāng)時, ,此時單調(diào)遞減;

當(dāng)時, ,此時單調(diào)遞增.

綜上所述,當(dāng)時,函數(shù)在單調(diào)遞增區(qū)間為;

當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為

2)由(1)知,當(dāng)時,函數(shù)R上單調(diào)遞增且當(dāng)時, 不可能恒成立;

當(dāng)a=0時,此時ab=0

當(dāng)a>0時,由函數(shù)對任意xR都成立,可得,

設(shè),則,

由于,令,得

時, 單調(diào)遞增;

時, 單調(diào)遞減.

,即當(dāng)時,ab的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知坐標(biāo)平面上動點與兩個定點, ,且.

(1)求點的軌跡方程,并說明軌跡是什么圖形;

(2)記(1)中軌跡為,過點的直線所截得的線段長度為8,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.

(Ⅰ)若花店一天購進17枝玫瑰花,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:枝, )的函數(shù)解析式.

(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

(1)若花店一天購進17枝玫瑰花, 表示當(dāng)天的利潤(單位:元),求的分布列及數(shù)學(xué)期望;

(2)若花店計劃一天購進16枝或17枝玫瑰花,以利潤角度看,你認為應(yīng)購進16枝好還是17枝好?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形為矩形,四邊形為梯形, ,平面與平面垂直,且.

(1)求證: 平面;

(2)若,且平面與平面所成銳二面角的余弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)求曲線在點處的切線方程;

)當(dāng)時,求證:函數(shù)有且僅有一個零點;

)當(dāng)時,寫出函數(shù)的零點的個數(shù).(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】無窮數(shù)列滿足: 為正整數(shù),且對任意正整數(shù), 為前 , , 中等于的項的個數(shù).

)若,請寫出數(shù)列的前7項;

)求證:對于任意正整數(shù)必存在,使得;

)求證:“”是“存在,當(dāng)時,恒有 成立”的充要條件。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間

(2)當(dāng)時,求函數(shù)上的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點M(﹣1,0),N(1,0),曲線E上任意一點到點M的距離均是到點N的距離的倍.

(1)求曲線E的方程;

(2)已知m≠0,設(shè)直線xmy﹣1=0交曲線EAC兩點,直線mx+ym=0交曲線EB,D兩點,若CD的斜率為﹣1時,求直線CD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, 、分別為、的中點, , .

(1)求證:平面平面

(2)若直線和平面所成角的正弦值等于,求二面角的平面角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案