分析 (1)求出C1關(guān)于直線l對稱的C2的坐標,即可求圓C1關(guān)于直線l對稱的圓C2的方程;
(2)設(shè)出過P點的直線l1與l2的點斜式方程,根據(jù)⊙C1和⊙C2的半徑相等,及直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,可得⊙C1的圓心到直線l1的距離和圓C2的圓心到直線l2的距離相等,故我們可以得到一個關(guān)于直線斜率k的方程,即可以求所有滿足條件的點P的坐標.
解答 解:(1)設(shè)C2(a,b),則$\left\{\begin{array}{l}{\frac{a+3}•(-\frac{7}{4})=-1}\\{14×\frac{a-3}{2}+8×\frac{2}-23=0}\end{array}\right.$,
解得a=4,b=4,
∴圓C2的方程:(x-4)2+(y-4)2=4;
(2)設(shè)點P(a,b)滿足條件,
由題意分析可得直線l1、l2的斜率均存在且不為0,
不妨設(shè)直線l1的方程為y-b=k(x-a),k≠0
則直線l2方程為:y-b=-$\frac{1}{k}$(x-a)
∵⊙C1和⊙C2的半徑相等,及直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,
∴⊙C1的圓心到直線l1的距離和圓C2的圓心到直線l2的距離相等
即$\frac{|-k(3+a)+b|}{\sqrt{1+{k}^{2}}}$=$\frac{|k(4-b)+4-a|}{\sqrt{{k}^{2}+1}}$
整理得|-k(3+a)+b||=|k(4-b)+4-a|
∴-k(3+a)+b=±[k(4-b)+4-a],
即k(-a+b-7)=a+b-4或(-a-b+1)k=-a+b+4
因k的取值有無窮多個,所以$\left\{\begin{array}{l}{-a+b-7=0}\\{a+b-4=0}\end{array}\right.$或$\left\{\begin{array}{l}{-a-b+1=0}\\{-a+b+4=0}\end{array}\right.$
解得a=-$\frac{3}{2}$,b=$\frac{11}{2}$或a=$\frac{5}{2}$,b=-$\frac{3}{2}$,
這樣的點只可能是點P1(-$\frac{3}{2}$,$\frac{11}{2}$)或點P2($\frac{5}{2}$,-$\frac{3}{2}$)
點評 本題考查圓的方程,考查點到直線的距離公式,直線與圓的位置關(guān)系,對稱的知識,注意方程無數(shù)解的條件,考查轉(zhuǎn)化思想,函數(shù)與方程的思想,常考題型,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{6}$,$\frac{1}{\root{3}{16}}$] | B. | [$\frac{1}{6}$,$\frac{1}{4}$] | C. | [$\frac{1}{9}$,$\frac{1}{\root{3}{16}}$] | D. | [$\frac{1}{9}$,$\frac{1}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com