4.已知等差數(shù)列{an}的公差d≠0,a2=3,且a1、a3、a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\left\{{\begin{array}{l}{{2^{a_n}},}&{n為奇數(shù)}\\{\frac{2}{3}{a_n},}&{n為偶數(shù)}\end{array}}\right.$,數(shù)列{bn}的前n項(xiàng)和為Sn,求S16

分析 (I)利用等比數(shù)列與等差數(shù)列的通項(xiàng)公式即可得出.
(II)利用等比數(shù)列的求和公式即可得出.

解答 解:(Ⅰ)由題${a_3}^2={a_1}{a_7}$,即${({a_1}+2d)^2}={a_1}({a_1}+6d)$,
又d≠0,∴a1=2d,
又a1+d=3,聯(lián)立解得a1=2,d=1.
∴an=n+1.
(Ⅱ)由題得${S_{16}}=({2^{a_1}}+{2^{a_3}}+…+{2^{{a_{15}}}})+\frac{2}{3}({a_2}+{a_4}+…+{a_{16}})$
=$\frac{{4(1-{4^8})}}{1-4}+\frac{2}{3}×\frac{(3+17)8}{2}=\frac{1}{3}×{4^9}+52$.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某中學(xué)一名數(shù)學(xué)老師對(duì)全班50名學(xué)生某次考試成績(jī)分男女生進(jìn)行了統(tǒng)計(jì)(滿(mǎn)分150分),其中120分(含120分)以上為優(yōu)秀,繪制了如下的兩個(gè)頻率分布直方圖:

(1)完善如圖3該老師繪制男生頻率分布直方圖的流程圖.
(2)根據(jù)以上兩個(gè)直方圖完成下面的2×2列聯(lián)表:
優(yōu)秀不優(yōu)秀總計(jì)
男生
女生
總計(jì)
(3)根據(jù)(2)中表格的數(shù)據(jù)計(jì)算,你是否有95%的把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)是否優(yōu)秀與性別之間有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.“直線l:y=kx+2k-1在坐標(biāo)軸上截距相等”是“k=-1”的(  )條件.
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)集合A={x|1<x<2},B={x|x<a},若A∩B=A,則a的取值范圍是( 。
A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求證2sinαcosβ=sin(α+β)+sin(α-β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=|2x-1|+|2x-3|.
(1)求函數(shù)f(x)的最小值,并求取得最小值時(shí)x的取值范圍;
(2)若$g(x)=\frac{1}{f(x)+m}$的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線Ax+By+C=0的方向向量為(B,-A),現(xiàn)有常數(shù)m>0,向量$\overrightarrow{a}$=(0,1),向量$\overrightarrow$=(m,0),經(jīng)過(guò)點(diǎn)A(m,0)以λ$\overrightarrow{a}$+$\overrightarrow$為方向向量的直線與經(jīng)過(guò)點(diǎn)B(-m,0),以λ$\overrightarrow$-4$\overrightarrow{a}$為方向向量的直線交于點(diǎn)P,其中λ∈R.
(Ⅰ)求點(diǎn)P的軌跡E;
(Ⅱ)若m=2$\sqrt{5}$,F(xiàn)(4,0),問(wèn)是否存在實(shí)數(shù)k使得過(guò)點(diǎn)F以k為斜率的直線與軌跡E交于M,N兩點(diǎn),并且S△OMN=$\frac{4\sqrt{10}}{3}$(O為坐標(biāo)原點(diǎn))?若存在,求出k的值;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知圓的圓心為(1,2)和圓上的一點(diǎn)為(-2,6),求圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=ax-x3(a>0且a≠1)在(0,+∞)內(nèi)有兩個(gè)零點(diǎn),則a的取值范圍是(1,e${\;}^{\frac{3}{e}}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案