6.如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD是邊長為2的正三角形,且側(cè)面PAD⊥底面ABCD,E為側(cè)棱PD的中點.
(1)求證:PB∥平面EAC;
(2)求證:AE⊥平面PCD;
(3)若直線AC與平面PCD所成的角為30°,求三棱錐D-AEC的體積.

分析 (1)連結(jié)BD交AC于O,連結(jié)OE,根據(jù)中位線定理得出PB∥OE,從而PB∥平面EAC;
(2)由面面垂直的性質(zhì)得出CD⊥平面PAD,于是CD⊥AE,由等邊三角形的性質(zhì)得出AE⊥PD,于是AE⊥平面PCD;
(3)∠ACE為直線CD與平面PCD所成的角,根據(jù)AE的長計算CE,CD,于是VD-AEC=VA-CDE=$\frac{1}{3}{S}_{△CDE}•AE$.

解答 證明:(1)連結(jié)BD交AC于O,連結(jié)OE.
∵四邊形ABCD是矩形,
∴O是BD的中點,又E是PD的中點,
∴PB∥OE,
∵PB?平面EAC,OE?平面EAC,
∴PB∥平面EAC.
(2)∵四邊形ABCD是矩形,
∴CD⊥AD,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD?平面ABCD,
∴CD⊥平面PAD,∵AE?平面PAD,
∴CD⊥AE,
∵三角形PAD是等邊三角形,E是PD的中點,
∴AE⊥PD,
又PD?平面PCD,CD?平面PCD,PD∩CD=D,
∴AE⊥平面PCD.
解:(3)∵AE⊥平面PCD,
∴∠ACE為直線CD與平面PCD所成的角,即∠ACE=30°.
∵側(cè)面PAD是邊長為2的正三角形,
∴AE=$\sqrt{3}$,DE=1.
∴AC=2AE=2$\sqrt{3}$,CE=3.
∴CD=$\sqrt{C{E}^{2}-D{E}^{2}}$=2$\sqrt{2}$.
∴VD-AEC=VA-CDE=$\frac{1}{3}{S}_{△CDE}•AE$=$\frac{1}{3}×\frac{1}{2}×2\sqrt{2}×1×\sqrt{3}$=$\frac{\sqrt{6}}{3}$.

點評 本題考查了線面平行,線面垂直的判定,面面垂直的性質(zhì),棱錐的體積計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,a,b,c分別是角A,B,C的對邊,$\frac{cosC}{cosB}$=$\frac{2a-c}$,且a+c=2.
(1)求角B;
(2)求邊長b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)全集U=R,集合A={x|x>2},B={x|x2-4x+3<0},則①A∩B={x|2<x<3};②∁UB={x|x≤1或x≥3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且2bcosC=2a-c.
(1)求角B的大小;
(2)若b=1,求a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖:在三棱柱ABC-A1B1C1中,底面是邊長為2$\sqrt{3}$的正三角形,點A1在底面ABC上的射影O恰是BC中點.
(Ⅰ)求證:AA1⊥BC;
(Ⅱ)當(dāng)側(cè)棱AA1和底面成45°角時,求V${\;}_{A-B{B}_{1}{C}_{1}C}$;
(Ⅲ)若D為棱AA1上一點,當(dāng)$\frac{{A}_{1}D}{DA}$為何值時,BD⊥A1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將邊長為2的正方形ABCD沿對角線AC折起,使BD=2,則三棱錐D-ABC的體積為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四面體ABCD中,O、E分別 BD、BC的中點,AB=AD=$\sqrt{2}$,CA=CB=CD=BD=2.
(1)求證:AO⊥平面BCD;
(2)求異面直線AB與CD所成角的余弦值大;
(3)求點E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)<6的解集為(-1,3),求a的值;
(2)在(1)的條件下,若存在x0∈R,使f(x0)≤t-f(-x0),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A,B是橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左,右頂點,點C在該橢圓上,在△ABC中,tanA=$\frac{2}{3}$,tanB=$\frac{3}{8}$,則該橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\sqrt{3}-1$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案