【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細(xì)心,另15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細(xì)心,另30人比較粗心.
(1)試根據(jù)上述數(shù)據(jù)完成2×2列聯(lián)表;

數(shù)學(xué)成績及格

數(shù)學(xué)成績不及格

合計(jì)

比較細(xì)心

比較粗心

合計(jì)


(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系. 參考數(shù)據(jù):獨(dú)立檢驗(yàn)隨機(jī)變量K2的臨界值參考表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

【答案】
(1)解:填寫2×2列聯(lián)表如下;

數(shù)學(xué)成績及格

數(shù)學(xué)成績不及格

合計(jì)

比較細(xì)心

45

10

55

比較粗心

15

30

45

合計(jì)

60

40

100


(2)解:根據(jù)2×2列聯(lián)表可以求得K2的觀測值

= ;

所以能在范錯(cuò)誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系


【解析】(1)根據(jù)題意填寫2×2列聯(lián)表即可;(2)根據(jù)2×2列聯(lián)表求得K2的觀測值,對照臨界值表即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)據(jù)x1,x2,x3,…,xn是普通職工n(n≥3,n∈N*)個(gè)人的年收入,設(shè)這n個(gè)數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上世界首富的年收入xn+1,則這n+1個(gè)數(shù)據(jù)中,下列說法正確的是

A. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大

C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

D. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)從某次考試成績中抽取若干名學(xué)生的分?jǐn)?shù),并繪制成如圖所示的頻率分布直方圖,樣本數(shù)據(jù)分組為[50,60),[60,70),[70,80),[80,90),[90,100].若用分層抽樣的方法從樣本中抽取分?jǐn)?shù)在[80,100]范圍內(nèi)的數(shù)據(jù)16個(gè),則其中分?jǐn)?shù)在[90,100]范圍內(nèi)的樣本數(shù)據(jù)有 (  )

A. 5個(gè) B. 6個(gè)

C. 8個(gè) D. 10個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)判斷函數(shù)的奇偶性,并證明.

(2)若,,求的值.

(3)若不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角AB、C的對邊分別為ab、c,且a>c,已知=2,cosB,b=3,求:

(1)ac的值;

(2)cos(BC)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),若對任意的,總存在,使成立,求實(shí)數(shù)的取值范圍;

(3)若的值域?yàn)閰^(qū)間,是否存在常數(shù),使區(qū)間的長度為?若存在,求出的值;若不存在,請說明理由.(注:區(qū)間的長度為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運(yùn)輸貨物到乙地,運(yùn)輸成本包括燃料費(fèi)用和其他費(fèi)用.已知該貨輪每小時(shí)的燃料費(fèi)與其速度的平方成正比,比例系數(shù)為,其他費(fèi)用為每小時(shí)元,且該貨輪的最大航行速度為海里/小時(shí).

)請將該貨輪從甲地到乙地的運(yùn)輸成本表示為航行速度(海里/小時(shí))的函數(shù).

)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,且0<x1<x2 , 給出下列命題: ① <1
②x2f(x1)<x1f(x2
③當(dāng)lnx>﹣1時(shí),x1f(x1)+x2f(x2)>2x2f(x1
④x1+f(x1)<x2+f(x2
其中正確的命題序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某批產(chǎn)品共有1 564,產(chǎn)品按出廠順序編號,號碼從11 564,檢測員要從中抽取15件產(chǎn)品作檢測,請給出一個(gè)系統(tǒng)抽樣方案.

查看答案和解析>>

同步練習(xí)冊答案