【題目】在△ABC中,內(nèi)角A、B、C的對邊分別為a、bc,且a>c,已知=2,cosB,b=3,求:

(1)ac的值;

(2)cos(BC)的值.

【答案】(1)a=2,c=3a=3,c=2;(2).

【解析】試題分析:()利用平面向量的數(shù)量積運(yùn)算法則化簡·2,將cosB的值代入求出ac=6,再利用余弦定理列出關(guān)系式,將b,cosB以及ac的值代入得到a2+c2=13,聯(lián)立即可求出ac的值;()由cosB的值,利用同角三角函數(shù)間基本關(guān)系求出sinB的值,由c,bsinB,利用正弦定理求出sinC的值,進(jìn)而求出cosC的值,原式利用兩角和與差的余弦函數(shù)公式化簡后,將各自的值代入計(jì)算即可求出值

試題解析:(1)由·2,得c·acos B2

cos B,所以ac6

由余弦定理,得a2c2b22accos B,

b3,所以a2c292×213

聯(lián)立

因?yàn)?/span>ac,所以a3,c2

2)在△ABC中,sin B

由正弦定理,得sin Csin B×

因?yàn)?/span>abc,所以C為銳角,因此cos C

于是cosBC)=cos Bcos Csin Bsin C××

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),解方程;

(2)當(dāng)時(shí),若不等式上恒成立,求實(shí)數(shù)a的取值范圍;

(3)若a為常數(shù),且函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)b的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有關(guān)部門從甲、乙兩個(gè)城市所有的自動(dòng)售貨機(jī)中隨機(jī)抽取了16臺(tái),記錄下上午8:00~11:00之間各自的銷售情況(單位:元):

甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41;

乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.

試用兩種不同的方式分別表示上面的數(shù)據(jù),并簡要說明各自的優(yōu)點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足對任意,存在常數(shù),都有成立,則稱

上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)上的值域,判斷函數(shù)上是否為有界函數(shù),并說明理由.

(2)若函數(shù)上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細(xì)心,另15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細(xì)心,另30人比較粗心.
(1)試根據(jù)上述數(shù)據(jù)完成2×2列聯(lián)表;

數(shù)學(xué)成績及格

數(shù)學(xué)成績不及格

合計(jì)

比較細(xì)心

比較粗心

合計(jì)


(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系. 參考數(shù)據(jù):獨(dú)立檢驗(yàn)隨機(jī)變量K2的臨界值參考表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y=2x2和直線l:y=kx+1,O為坐標(biāo)原點(diǎn).
(1)求證:l與C必有兩交點(diǎn);
(2)設(shè)l與C交于A(x1 , y1)、B(x2 , y2)兩點(diǎn),且直線OA和OB的斜率之和為1,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三(三)班學(xué)生要安排畢業(yè)晚會(huì)的3個(gè)音樂節(jié)目,2個(gè)舞蹈節(jié)目和1個(gè)曲藝節(jié)目的演出順序,要求兩個(gè)舞蹈節(jié)目不連排,3個(gè)音樂節(jié)目恰有兩個(gè)節(jié)目連排,則不同排法的種數(shù)是(
A.240
B.188
C.432
D.288

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是∠DAB=60°且邊長為a的菱形,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD,若G為AD邊的中點(diǎn),
(1)求證:BG⊥平面PAD;
(2)求證:AD⊥PB;
(3)若E為BC邊的中點(diǎn),能否在棱PC上找到一點(diǎn)F,使平面DEF⊥平面ABCD,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案