3.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AD=1,AB=$\sqrt{3}$,點(diǎn)E為PD的中點(diǎn),點(diǎn)F在棱DC上移動(dòng).
(1)當(dāng)點(diǎn)F為DC的中點(diǎn)時(shí),求證:EF∥平面PAC
(2)求證:無(wú)論點(diǎn)F在DC的何處,都有PF⊥AE
(3)求二面角E-AC-D的余弦值.

分析 (1)欲證EF∥平面PAC,根據(jù)直線與平面平行的判定定理可知只需證EF與平面PAC內(nèi)一直線平行,根據(jù)中位線定理可知EF∥PC,PC?平面PAC,EF?平面PAC,滿足定理所需條件;
(2)欲證PF⊥AE,而PF?平面PDC,可先證AE⊥平面PDC,根據(jù)CD⊥平面PAD,有線面垂直的性質(zhì)可知AE⊥CD,根據(jù)等腰三角形可知AE⊥PD,CD∩PD=D,滿足線面垂直的判定定理.
(3)過(guò)E坐EM⊥AD垂足為M,過(guò)M作MN⊥AC,垂足為N,連接EN.則∠MNE為二面角E-AC-D的平面角,在Rt△MNE中計(jì)算即可.

解答 解:(1)證明:當(dāng)點(diǎn)F為CD的中點(diǎn)時(shí),∵點(diǎn)E,F(xiàn)分別為CD,PD的中點(diǎn),∴EF∥PC.(3分)
∵PC?平面PAC,EF?平面PAC,
∴EF∥平面PAC.
(2)證明:∵PA⊥平面ABCD,CD?平面ABCD,
∴CD⊥PA.又ABCD是矩形,∴CD⊥AD,
∵PA∩AD=A,∴CD⊥平面PAD.
∵AE?平面PAD,∴AE⊥CD.
∵PA=AD,點(diǎn)F是PD的中點(diǎn),∴AE⊥PD.又CD∩PD=D,∴AE⊥平面PDC.
∵PF?平面PDC,∴PF⊥AE.
(3)過(guò)E坐EM⊥AD垂足為M,過(guò)M作MN⊥AC,垂足為N,連接EN.
易證∠MNE為二面角E-AC-D的平面角.
△ACD的邊AC上的高為$\frac{1×\sqrt{3}}{2}=\frac{\sqrt{3}}{2}$,∴MN=,$\frac{\sqrt{3}}{4}$,
∵EM=$\frac{1}{2}$,EN=$\sqrt{M{N}^{2}+E{M}^{2}}=\frac{\sqrt{7}}{4}$,
∴cos∠MNE=$\frac{\sqrt{7}}{4}$,
所以二面角E-AC-D的余弦值為$\frac{\sqrt{21}}{7}$.

點(diǎn)評(píng) 本題主要考查了直線與平面的判定,以及線面垂直的判定和性質(zhì)等有關(guān)知識(shí),同時(shí)考查了空間想象能力和推理論證的能力,二面角等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對(duì)玉米種植情況進(jìn)行調(diào)研,力爭(zhēng)有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如右圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方式從抗倒伏的玉米中抽出5株,再?gòu)倪@5株玉米中選取2株進(jìn)行雜交實(shí)驗(yàn),選取的植株均為矮莖的概率是多少?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
( ${{K}^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

執(zhí)行如圖所示的程序框圖,若輸出的,則判斷框內(nèi)的正整數(shù)的值為( )

A.7 B.6,7

C.6,7,8 D.8,9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南衡陽(yáng)縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

要得到函數(shù)的圖像,只需要將函數(shù)的圖像( )

A.向左平移個(gè)單位 B.向右平移個(gè)單位

C.向左平移個(gè)單位 D.向右平移個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南衡陽(yáng)縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

下列命題中正確的是( )

A.若,則;

B.命題:“”的否定是“”;

C.直線垂直的充要條件為;

D.“若,則”的逆否命題為“若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如果b是a,c的等差中項(xiàng),y是x,z的等比中項(xiàng),且x,y,z都是正數(shù),則(b-c)logmx+(c-a)logmy+(a-b)logmz=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在四棱錐P-ABCD,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD于點(diǎn)M.
(1)求證:AM⊥PD
(2)求點(diǎn)D到平面ACM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,PA⊥矩形ABCD所在的平面,M,N分別是PC,PA的中點(diǎn),且PA=AB=2AD.
(I)求證:MN⊥CD;
(Ⅱ)求二面角P-AB-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知雙曲線${x^2}-\frac{y^2}{m}=1$(m>0)漸近線方程為y=±$\sqrt{3}$x,則m的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案