9.已知a1=1,${a_n}=n({a_{n+1}}-{a_n})(n∈{N^*})$,則數(shù)列{an}的通項公式是( 。
A.nB.${(\frac{n+1}{n})^{n-1}}$C.n2D.2n-1

分析 ${a_n}=n({a_{n+1}}-{a_n})(n∈{N^*})$,可得$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,a2=2.利用累乘即可得出.

解答 解:∵${a_n}=n({a_{n+1}}-{a_n})(n∈{N^*})$,則$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,a2=2.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}$•…$\frac{{a}_{2}}{{a}_{1}}$•a1=$\frac{n}{n-1}•\frac{n-1}{n-2}$•…×$\frac{2}{1}×1$=n,
故選:A.

點評 本題考查了數(shù)列遞推關系、通項公式、累乘法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.設集合A={x|-1≤x+1≤6},B={x|m-1≤x<2m+1}.
(1)當x∈Z,求A的真子集的個數(shù)?
(2)若B⊆A,求實數(shù)m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在下列區(qū)間中,函數(shù)f(x)=lnx+x-3的零點所在的區(qū)間為(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)$y=x+\frac{t}{x}$有如下性質:如果常數(shù)t>0,那么該函數(shù)在$(0,\sqrt{t}]$上是減函數(shù),在$[\sqrt{t},+∞)$上是增函數(shù).
(1)已知f(x)=$\frac{4{x}^{2}+4x+5}{2x+1}$-8,x∈[0,1],利用上述性質,求函數(shù)f(x)的單調區(qū)間和值域;
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x)=-x-2a,若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知全集U=R,A={x|x2<16},B={x|y=log3(x-4)},則下列關系正確的是(  )
A.A∪B=RB.A∪(∁RB)=RC.A∩(∁RB)=RD.(∁RA)∪B=R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知球O的半徑為R,A,B,C三點在球O的球面上,球心O到平面ABC的距離為$\frac{1}{2}R$,AB=AC=BC=3,則球O的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設函數(shù)f(x)=-|x|,g(x)=lg(ax2-4x+1),若對任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實數(shù)a的取值范圍為(-∞,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)y=$\sqrt{-{x}^{2}+4x}$的值域是( 。
A.(-∞,4]B.(-∞,2]C.[0,2]D.[0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在棱長為1的正方體ABCD-A1B1C1D1中,點P是正方體棱上一點(不包括棱的端點),若滿足|PA|+|PC1|=m的點P的個數(shù)為6,則m的取值范圍是$(\sqrt{3},\sqrt{5})$.

查看答案和解析>>

同步練習冊答案