【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),求的最大值;

(Ⅱ)若對(duì)恒成立,求的取值范圍;

(Ⅲ)證明

【答案】(Ⅰ)0;(Ⅱ) ;(Ⅲ)見(jiàn)解析.

【解析】試題分析:(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值即可;(Ⅱ)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論的范圍,得到函數(shù)的單調(diào)區(qū)間,從而確定的具體范圍即可;(Ⅲ)得到,取,作差證出結(jié)論即可.

試題解析:(Ⅰ)當(dāng) 時(shí), , ,當(dāng)時(shí), 單調(diào)遞增,當(dāng)時(shí), 單調(diào)遞減, 函數(shù)的最大值.

(Ⅱ) , 當(dāng)時(shí), 恒成立, 上是減函數(shù), 適合題意,②當(dāng)時(shí), 上是增函數(shù), ,不能使恒成立;③當(dāng)時(shí),令,得,當(dāng)時(shí), 上為增函數(shù), ,不能使恒成立, 的取值范圍是.

(Ⅲ)由(Ⅰ)得, ,, ,則 ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài),一個(gè)共享單車企業(yè)在某個(gè)城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:車輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過(guò)程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見(jiàn)下表:

租用單車數(shù)量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):

①完成下表(計(jì)算結(jié)果精確到0.1)(備注: , 稱為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));

租用單車數(shù)量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較, 的大小,判斷哪個(gè)模型擬合效果更好.

(2)這個(gè)公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放,根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬(wàn)輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6,問(wèn)該公司應(yīng)該投放8千輛還是1萬(wàn)輛能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤(rùn)=收入—成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:關(guān)于x的不等式x2+(a﹣1)x+a2<0的解集是空集,命題q:已知二次函數(shù)f(x)=x2﹣mx+2滿足 ,且當(dāng)x∈[0,a]時(shí),最大值是2,若命題“p且q”為假,“p或q”為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn),定直線,動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離之比等于.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)軌跡軸負(fù)半軸交于點(diǎn),過(guò)點(diǎn)作不與軸重合的直線交軌跡于兩點(diǎn),直線分別交直線于點(diǎn).試問(wèn):在軸上是否存在定點(diǎn),使得?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若以曲線上任意一點(diǎn)為切點(diǎn)作切線,曲線上總存在異于的點(diǎn),以點(diǎn)為切點(diǎn)作切線,且,則稱曲線具有“可平行性”,現(xiàn)有下列命題:

①函數(shù)的圖象具有“可平行性”;

②定義在的奇函數(shù)的圖象都具有“可平行性”;

③三次函數(shù)具有“可平行性”,且對(duì)應(yīng)的兩切點(diǎn) 的橫坐標(biāo)滿足;

④要使得分段函數(shù)的圖象具有“可平行性”,當(dāng)且僅當(dāng).

其中的真命題個(gè)數(shù)有()

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an},滿足d>0,且a1+a2+a3=9,a1a3=5
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn= ,Sn為數(shù)列{bn}的前n項(xiàng)和,證明:Sn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知已知圓 經(jīng)過(guò) 、 兩點(diǎn),且圓心C在直線 上,求解:(1)圓C的方程;(2)若直線 與圓 總有公共點(diǎn),求實(shí)數(shù) 的取值范圍.
(1)求圓C的方程;
(2)若直線 與圓 總有公共點(diǎn),求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上的最小值為﹣1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案