【題目】某中學(xué)為了解中學(xué)生的課外閱讀時(shí)間,決定在該中學(xué)的1200名男生和800名女生中按分層抽樣的方法抽取20名學(xué)生,對他們的課外閱讀時(shí)間進(jìn)行問卷調(diào)查.現(xiàn)在按課外閱讀時(shí)間的情況將學(xué)生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時(shí)間不超過3小時(shí)),類(參加課外閱讀,且平均每周參加課外閱讀的時(shí)間超過3小時(shí)).調(diào)查結(jié)果如下表:

男生

5

3

女生

3

3

1)求出表中,的值;

2)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為參加課外閱讀與否與性別有關(guān);

男生

女生

總計(jì)

不參加課外閱讀

參加課外閱讀

總計(jì)

PKk0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1,;(2)見解析,沒有90%的把握認(rèn)為參加閱讀與否與性別有關(guān)

【解析】

1)分層抽樣是按樣本容量的比例確定的,因此由男生12002 ,女生800人知抽取樣本中男生有12人,女生有8人,由此可得;

2)由(1)可得列聯(lián)表,根據(jù)公式計(jì)算出后可得結(jié)論.

解(1)設(shè)抽取的20人中,男,女生人數(shù)分別為,,則,,

所以,

2)列聯(lián)表如下:

男生

女生

總計(jì)

不參加課外閱讀

4

2

6

參加課外閱讀

8

6

14

總計(jì)

12

8

20

的觀測值,

所以沒有90%的把握認(rèn)為參加閱讀與否與性別有關(guān)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的圖象與曲線C:存在公共切線,則實(shí)數(shù)的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】回收1噸廢紙可以生產(chǎn)出0.8噸再生紙,可能節(jié)約用水約100噸,節(jié)約用煤約1.2噸,回收1噸廢鉛蓄電池可再生鉛約0.6噸,可節(jié)約用煤約0.8噸,節(jié)約用水約120噸,回收每噸廢鉛蓄電池的費(fèi)用約0.9萬元,回收1噸廢紙的費(fèi)用約為0.2萬元.現(xiàn)用于回收廢紙和廢鉛蓄電池的費(fèi)用不超過18萬元,在保證節(jié)約用煤不少于12噸的前提下,最多可節(jié)約用水約__________噸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ).

(1)如果曲線在點(diǎn)處的切線方程為,求, 的值;

(2)若, ,關(guān)于的不等式的整數(shù)解有且只有一個(gè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

1)直線l與曲線C是否有公共點(diǎn)?并說明理由;

2)若直線l與兩坐標(biāo)軸的交點(diǎn)為A,B,點(diǎn)P是曲線C上的一點(diǎn),求△PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)yfx)的導(dǎo)函數(shù),定義的導(dǎo)函數(shù),若方程0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,fx0))為函數(shù)yfx)的拐點(diǎn),經(jīng)研究發(fā)現(xiàn),所有的三次函數(shù)fx)=ax3+bx2+cx+da≠0)都有拐點(diǎn),且都有對稱中心,其拐點(diǎn)就是對稱中心,設(shè)fx)=x33x23x+6,則f+f+……+f)=_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若橢圓與橢圓滿足,則稱這兩個(gè)橢圓相似,叫相似比.若橢圓與橢圓相似且過點(diǎn).

(I)求橢圓的標(biāo)準(zhǔn)方程;

(II)過點(diǎn)作斜率不為零的直線與橢圓交于不同兩點(diǎn),為橢圓的右焦點(diǎn),直線、分別交橢圓于點(diǎn)、,設(shè),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市在創(chuàng)建國家級衛(wèi)生城(簡稱創(chuàng)衛(wèi))的過程中,相關(guān)部門需了解市民對創(chuàng)衛(wèi)工作的滿意程度,若市民滿意指數(shù)不低于0.8(注:滿意指數(shù)),創(chuàng)衛(wèi)工作按原方案繼續(xù)實(shí)施,否則需進(jìn)一步整改.為此該部門隨機(jī)調(diào)查了100位市民,根據(jù)這100位市民給創(chuàng)衛(wèi)工作的滿意程度評分,按以下區(qū)間:,,,,分為六組,得到如圖頻率分布直方圖:

1)為了解部分市民給創(chuàng)衛(wèi)工作評分較低的原因,該部門從評分低于60分的市民中隨機(jī)選取2人進(jìn)行座談,求這2人所給的評分恰好都在的概率;

2)根據(jù)你所學(xué)的統(tǒng)計(jì)知識,判斷該市創(chuàng)衛(wèi)工作是否需要進(jìn)一步整改,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|2xa|+|xa+1|

1)當(dāng)a4時(shí),求解不等式fx≥8;

2)已知關(guān)于x的不等式fxR上恒成立,求參數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案