10.已知函數(shù)y=2x+1,x∈{x∈Z|0≤x<3},則該函數(shù)的值域?yàn)椋ā 。?table class="qanwser">A.{y|1≤y<7}B.{y|1≤y≤7}C.{1,3,5,7}D.{1,3,5}

分析 根據(jù)定義域求解值域即可.

解答 解:函數(shù)y=2x+1,x∈{x∈Z|0≤x<3}={0,1,2}.
當(dāng)x=0時(shí),y=1,
當(dāng)x=1時(shí),y=3,
當(dāng)x=2時(shí),y=5.
∴函數(shù)的值域?yàn)閧1,3,5}.
故選D.

點(diǎn)評(píng) 本題考查了對(duì)函數(shù)的理解,值域的求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)某地若干戶家庭的年收入x(單位:萬(wàn)元)和年飲食支出y(單位:萬(wàn)元),調(diào)查顯示x與y具有線性相關(guān)關(guān)系,并由調(diào)查數(shù)據(jù)得到y(tǒng)對(duì)x的回歸直線方程為:$\widehat{y}$=0.254x+0.321.由回歸直線方程可知,家庭年收入每增加1萬(wàn)元,則年飲食支出平均增加( 。
A.0.254萬(wàn)元B.0.321萬(wàn)元C.0.575萬(wàn)元D.-0.254萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知a>0,b>0,且a+b=1,則($\frac{1}{a}$+2)($\frac{1}$+2)的最小值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.盒子中裝有大小相同的2個(gè)紅球和3個(gè)白球,從中摸出一個(gè)球然后放回袋中再摸出一個(gè)球,則兩次摸出的球顏色相同的概率是$\frac{13}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.用二分法求方程x2-10=0的近似根的算法中要用哪種算法結(jié)構(gòu)( 。
A.順序結(jié)構(gòu)B.條件結(jié)構(gòu)C.循環(huán)結(jié)構(gòu)D.以上都用

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.給出下列判斷:
①f(x)=$\sqrt{x-2}+\sqrt{1-x}$有意義;
②已知集合A={x|mx=1},B={1,2},且A⊆B,則實(shí)數(shù)m=1或m=$\frac{1}{2}$;
③函數(shù)y=$\left\{\begin{array}{l}{x^2},x≥0\\-{x^2},\;\;x<0\end{array}$的圖象是拋物線;
④y=f(x)在R是增函數(shù),則y=f(-x)在R是減函數(shù).
其中正確的是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x=1是函數(shù)f(x)=ax3-bx-lnx(a>0,b∈R)的一個(gè)極值點(diǎn),則lna與b-1的大小關(guān)系是( 。
A.lna>b-1B.lna<b-1C.lna=b-1D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x-1)<f(3)的實(shí)數(shù)x的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且(x+1)f(x)+xf′(x)>0對(duì)x∈R恒成立,則下列函數(shù)在實(shí)數(shù)集內(nèi)一定是增函數(shù)的為(  )
A.f(x)B.xf(x)C.exf(x)D.xexf(x)

查看答案和解析>>

同步練習(xí)冊(cè)答案