15.給出下列判斷:
①f(x)=$\sqrt{x-2}+\sqrt{1-x}$有意義;
②已知集合A={x|mx=1},B={1,2},且A⊆B,則實(shí)數(shù)m=1或m=$\frac{1}{2}$;
③函數(shù)y=$\left\{\begin{array}{l}{x^2},x≥0\\-{x^2},\;\;x<0\end{array}$的圖象是拋物線;
④y=f(x)在R是增函數(shù),則y=f(-x)在R是減函數(shù).
其中正確的是④.

分析 對4個(gè)命題分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:①f(x)=$\sqrt{x-2}+\sqrt{1-x}$,不存在x使得根式同時(shí)有意義,不正確;
②已知集合A={x|mx=1},B={1,2},且A⊆B,則實(shí)數(shù)m=0或m=1或m=$\frac{1}{2}$,不正確;
③函數(shù)y=$\left\{\begin{array}{l}{x^2},x≥0\\-{x^2},\;\;x<0\end{array}$是奇函數(shù),圖象是拋物線一部分,不正確;
④y=f(x)在R是增函數(shù),則y=f(-x)在R是減函數(shù),正確.
故答案為④.

點(diǎn)評 本題考查命題的真假判斷,考查函數(shù)的性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某中學(xué)田徑共有42名隊(duì)員,其中男生28名、女生14名,采用分層抽樣的方法選出6人參加一個(gè)座談會.求運(yùn)動員甲被抽到的概率以及選出的男、女運(yùn)動員的人數(shù)為$\frac{1}{7}$,4,2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若a∈{1,2},b∈{-2,-1,0,1,2},方程x2+ax+b=0的兩根均為實(shí)數(shù)的概率(  )
A.$\frac{3}{5}$B.$\frac{7}{10}$C.$\frac{1}{4}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點(diǎn)(1,$\frac{3}{2}$)在橢圓C上,且橢圓C的離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)過橢圓C的右焦點(diǎn)F的直線與橢圓C交于P、Q兩點(diǎn),A為橢圓C的右頂點(diǎn),直線PA,QA分別交直線l:x=4于M,N兩點(diǎn),求證:FM⊥FN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=2x+1,x∈{x∈Z|0≤x<3},則該函數(shù)的值域?yàn)椋ā 。?table class="qanwser">A.{y|1≤y<7}B.{y|1≤y≤7}C.{1,3,5,7}D.{1,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知A(-1,-3),B(3,5),點(diǎn)M在直線AB上,且|$\overrightarrow{AM}$|=$\frac{3}{2}$|$\overrightarrow{MB}$|,求$\overrightarrow{OM}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={x|x2-4x+3≥0},B={x|2x-3≤0},則A∪B=( 。
A.(-∞,1]∪[3,+∞)B.[1,3]C.$[{\frac{3}{2},3}]$D.$({-∞,\frac{3}{2}}]∪[{3,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在銳角△ABC中,設(shè)角A,B,C所對邊分別為a,b,c,已知向量$\overrightarrow{m}$=(b+c,a2+bc),$\overrightarrow{n}$=(b+c,-1),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)求角A的大小;
(2)若a=3,求△ABC的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\sqrt{(lnx-2)(x-lnx-1)}$的定義域?yàn)閇e2,+∞)∪{1}.

查看答案和解析>>

同步練習(xí)冊答案