已知f(x)為R上的減函數(shù),則滿足f(2x-1)<f(1)的實(shí)數(shù)x的取值范圍是 (  )
A、(-∞,-1)
B、(-1,+∞)
C、(-∞,1)
D、(1,+∞)
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用函數(shù)的單調(diào)性,轉(zhuǎn)化不等式,求解即可.
解答: 解:f(x)為R上的減函數(shù),則滿足f(2x-1)<f(1)
所以2x-1>1,解得x>1.
故選:D.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性問題,考查了基本函數(shù)的性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫出指數(shù)函數(shù)y=(
1
2
)x
,對(duì)數(shù)函數(shù)y=log16x的圖象,并求出不等式f(x)≥g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ex
a
-
a
ex
(a>0)是定義在R上的奇函數(shù).
(1)求a的值;
(2)設(shè)函數(shù)g(x)=1-
2a
2x+1
,判斷g(x)的單調(diào)性,并用定義證明你的結(jié)論;
(3)若函數(shù)h(x)=e2x+meax(其中e=2.71828…)在x∈[0,ln4]的最小值為0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)sin(-
17
6
π)+cos(-
19
3
π)+tan
53
6
π;
(2)
tan(π-α)cos(2π-α)sin(-α+
2
)
cos(-α-π)sin(-α-π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查,A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:?jiǎn)挝皇侨f(wàn)元)

(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),寫出它們的函數(shù)關(guān)系式.
(2)現(xiàn)企業(yè)有20萬(wàn)元資金全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這20萬(wàn)元資金,能使獲得的利潤(rùn)最大,其最大利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)畫出函數(shù)f(x)=|x|(x-4)的圖象;
(2)利用圖象寫出函數(shù)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)=k有三個(gè)不同的根求k的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+
x-2
x+1
(a>1).
(1)判定函數(shù)f(x)在(-1,+∞)上的單調(diào)性,并給出證明;
(2)證明:方程f(x)=0沒有負(fù)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知如圖的程序框圖如圖所示
(1)寫出程序框圖所對(duì)應(yīng)的算法語(yǔ)句;
(2)將右邊的“直到型循環(huán)結(jié)構(gòu)”改為“當(dāng)型循環(huán)結(jié)構(gòu)”,并寫出當(dāng)型循環(huán)相對(duì)應(yīng)的算法語(yǔ)句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A、B是非空集合,定義A×B={x|x∈A∪B且x∉A∩B}.已知A={x|y=
1
2x-x2
},B={y|y=
1
2
x+
x-1
},則A×B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案