精英家教網 > 高中數學 > 題目詳情

【題目】正方體ABCD﹣A′B′C′D′中,AB′與A′C′所在直線的夾角為(
A.30°
B.60°
C.90°
D.45°

【答案】B
【解析】解:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系, 設正方體ABCD﹣A′B′C′D′中棱長為1,
則A(1,0,0),B′(1,1,1),A′(1,0,1),C′(0,1,1),
=(0,1,1), =(﹣1,1,0),
設AB′與A′C′所在直線的夾角為θ,
則cosθ= = = ,
∴AB′與A′C′所在直線的夾角為60°.
故選:B.

【考點精析】關于本題考查的異面直線及其所成的角,需要了解異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現兩條異面直線間的關系才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知集合A={x|﹣1≤x≤10},集合B={x|2x﹣6≥0}.
R(A∪B);
已知C={x|a<x<a+1},且CA,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(Ⅰ)當時,求證:過點有三條直線與曲線相切;

(Ⅱ)當時, ,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,且成等差數列,,,函數

(1)求數列 的通項公式;

(2)設數列滿足,記數列的前項和為,試比較 的大小?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從開始計數的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數據顯示, 之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出關于的回歸直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)求函數在區(qū)間上的最小值;

(Ⅱ)證明:對任意, ,都有成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 ,向量 ,函數f(x)=
(1)求函數f(x)的單調遞增區(qū)間;
(2)將函數y=f(x)的圖象上所有點向右平行移動 個單位長度,得函數y=g(x)的圖象,求函數y=g(x)在區(qū)間[0,π]上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,.分別是的中點,求證:

(Ⅰ)底面;

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設m個正數a1 , a2 , …,am(m≥4,m∈N*)依次圍成一個圓圈.其中a1 , a2 , a3 , …ak1 , ak(k<m,k∈N*)是公差為d的等差數列,而a1 , am , am1 , …,ak+1 , ak是公比為2的等比數列.
(1)若a1=d=2,k=8,求數列a1 , a2 , …,am的所有項的和Sm;
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整數k,滿足a1+a2+…+ak1+ak=3(ak+1+ak+2+…+am1+am)?若存在,求出k值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案