11.已知$\overrightarrow{a}$、$\overrightarrow$均為單位向量,它們的夾角為$\frac{π}{3}$,那么|$\overrightarrow{a}$+3$\overrightarrow$|等于$\sqrt{13}$.

分析 由題意可得,∴$\overrightarrow{a}•\overrightarrow$=$\frac{1}{2}$,再根據(jù)|$\overrightarrow{a}$+3$\overrightarrow$|=$\sqrt{{(\overrightarrow{a}+3\overrightarrow)}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+6\overrightarrow{a}•\overrightarrow+{9\overrightarrow}^{2}}$,計(jì)算求的結(jié)果.

解答 解:∵$\overrightarrow{a}$、$\overrightarrow$均為單位向量,它們的夾角為$\frac{π}{3}$,∴$\overrightarrow{a}•\overrightarrow$=1×1×cos$\frac{π}{3}$=$\frac{1}{2}$,
∴|$\overrightarrow{a}$+3$\overrightarrow$|=$\sqrt{{(\overrightarrow{a}+3\overrightarrow)}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+6\overrightarrow{a}•\overrightarrow+{9\overrightarrow}^{2}}$=$\sqrt{1+3+9}$=$\sqrt{13}$,
故答案為:$\sqrt{13}$.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的定義,求向量的模的方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知全集U={1,2,3,4,5,6},集合A={1,2,4},集合B={3,6},則∁U(A∪B)=(  )
A.{1,2,4}B.{1,2,4,5}C.{2,4}D.{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=2cosx({cosx+\sqrt{3}sinx})+a({a∈R})$.
(1)求f(x)的最小正周期;
(2)當(dāng)$x∈[{0,\frac{π}{2}}]$時(shí),f(x)的最小值為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在等比數(shù)列{an}中,已知${a_1}=\frac{1}{4},{a_3}{a_5}=4({{a_4}-1})$,則{an}的前10項(xiàng)和S10=$\frac{1023}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)$f(x)={x^3}+\frac{5}{2}{x^2}+ax+b({a,b∈R})$,函數(shù)f(x)的圖象記為曲線C.
(1)若函數(shù)f(x)在x=-1時(shí)取得極大值2,求a,b的值;
(2)若函數(shù)$F(x)=2f(x)-\frac{5}{2}{x^2}-({2a-1})x-3b$存在三個(gè)不同的零點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)設(shè)動(dòng)點(diǎn)A(x0,f(x0))處的切線l1與曲線 C交于另一點(diǎn)B,點(diǎn)B處的切線為l2,兩切線的斜率分別為k1,k2,當(dāng)a為何值時(shí)存在常數(shù)λ使得k2=λk1?并求出λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為$\frac{\sqrt{2}}{2}$.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)k=1時(shí),求△AMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知數(shù)列 {an},{bn}滿足 bn=an+an+1,則“數(shù)列{an}為等差數(shù)列”是“數(shù)列{bn}為 等差數(shù)列”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.圓O的半徑為定長(zhǎng),A是平面上一定點(diǎn),P是圓上任意一點(diǎn),線段AP的垂直平分線l和直線OP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為(  )
A.一個(gè)點(diǎn)B.橢圓
C.雙曲線D.以上選項(xiàng)都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知$f(x)=\left\{\begin{array}{l}{log_a}({a{x^2}-4x+4}),x≥1\\({3-a})x+b,x≤1\end{array}\right.$在(-∞,+∞)上滿足$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,則b的取值范圍是( 。
A.(-∞,0)B.[1,+∞)C.(-1,1)D.[0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案