20.圓O的半徑為定長,A是平面上一定點(diǎn),P是圓上任意一點(diǎn),線段AP的垂直平分線l和直線OP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動時,點(diǎn)Q的軌跡為( 。
A.一個點(diǎn)B.橢圓
C.雙曲線D.以上選項(xiàng)都有可能

分析 結(jié)合雙曲線的定義及圓與直線的相關(guān)性質(zhì),推導(dǎo)新的結(jié)論,熟練掌握雙曲線的定義及圓與直線的性質(zhì)是解決問題的關(guān)鍵.

解答 解:∵A為⊙O外一定點(diǎn),P為⊙O上一動點(diǎn)
線段AP的垂直平分線交直線OP于點(diǎn)Q,
則QA=QP,則QA-QO=QP-QO=OP=R,
即動點(diǎn)Q到兩定點(diǎn)O、A的距離差為定值,
根據(jù)雙曲線的定義,可知點(diǎn)Q的軌跡是:以O(shè),A為焦點(diǎn),OP為實(shí)軸長的雙曲線
故選:C.

點(diǎn)評 雙曲線是指與平面上兩個定點(diǎn)的距離之差的絕對值為定值的點(diǎn)的軌跡,也可以定義為到定點(diǎn)與定直線的距離之比是一個大于1的常數(shù)的點(diǎn)之軌跡.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x+2y-4≤0}\\{3x+y-3≥0}\\{x-y-1≤0}\end{array}}\right.$,則目標(biāo)函數(shù)z=x-2y的最小值為( 。
A.$-\frac{16}{5}$B.-3C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow{a}$、$\overrightarrow$均為單位向量,它們的夾角為$\frac{π}{3}$,那么|$\overrightarrow{a}$+3$\overrightarrow$|等于$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知{an}是等比數(shù)列,a5=$\frac{1}{2},4{a_3}+{a_7}$=2,則a7=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)滿足$\overrightarrow{{A}_{1}E}$=3$\overrightarrow{E{B}_{1}}$,$\overrightarrow{{C}_{1}F}$=3$\overrightarrow{F{D}_{1}}$,則BE與DF所成角的正弦值為( 。
A.$\frac{8}{17}$B.$\frac{9}{17}$C.$\frac{12}{17}$D.$\frac{15}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.Sn為數(shù)列{an}的前n項(xiàng)和,已知an>0,an2+an=2Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{{a}_{n}}{{2}^{{a}_{n-1}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.長方體的一個頂點(diǎn)上三條棱長分別為3、4、5,且它的8個頂點(diǎn)都在同一球面上,則這個球的表面積是(  )
A.25πB.50πC.125πD.75π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,在透明塑料制成的長方體ABCD-A1B1C1D1容器內(nèi)灌進(jìn)一些水,將容器底面一邊BC固定于地面上,再將容器傾斜,隨著傾斜度的不同,有下列四個說法:
①水的部分始終呈棱柱狀;
②水面四邊形EFGH的面積不改變;
③棱A1D1始終與水面EFGH平行;
④當(dāng)E∈AA1時,AE+BF是定值.其中正確說法的是( 。
A.②③④B.①②④C.①③④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)的定義域?yàn)閇-2,2],在同一坐標(biāo)系下,函數(shù)y=f(x)的圖象與直線x=1的交點(diǎn)個數(shù)為(  )
A.0個B.1個C.2個D.0個或者2個

查看答案和解析>>

同步練習(xí)冊答案