設x,y,z>0,則三個數(shù), (  )

A.都大于2 B.至少有一個大于2

C.至少有一個不小于2 D.至少有一個不大于2

 

C

【解析】假設這三個數(shù)都小于2,則三個數(shù)之和小于6,又=()+()+()≥2+2+2=6,當且僅當x=y(tǒng)=z時取等號,與假設矛盾,故這三個數(shù)至少有一個不小于2.另取x=y(tǒng)=z=1,可排除A、B.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-5直線、平面垂直的判定及性質(zhì)(解析版) 題型:選擇題

已知兩條直線m,n,兩個平面α,β.給出下面四個命題:

①m∥n,m⊥α⇒n⊥α;

②α∥β,m?α,n?β⇒m∥n;

③m∥n,m∥α⇒n∥α;

④α∥β,m∥n,m⊥α⇒n⊥β.

其中正確命題的序號是(  )

A.①③ B.②④ C.①④ D.②③

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-2空間幾何體的表面積和體積(解析版) 題型:選擇題

一個直棱柱被一個平面截去一部分后所剩幾何體的三視圖如圖所示,則該幾何體的體積為(  )

A.9 B.10 C.11 D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-7數(shù)學歸納法(解析版) 題型:選擇題

用數(shù)學歸納法證明1++…+> (n∈N*)成立,其初始值至少應取(  )

A.7 B.8 C.9 D.10

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-6直接證明與間接證明(解析版) 題型:填空題

請閱讀下列材料:若兩個正實數(shù)a1,a2滿足a12+a22=1,那么a1+a2≤.

證明:構造函數(shù)f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因為對一切實數(shù)x,恒有f(x)≥0,所以Δ≤0,從而得4(a1+a2)2-8≤0,所以a1+a2≤.

根據(jù)上述證明方法,若n個正實數(shù)滿足a12+a22+…+an2=1時,你能得到的結論為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-5合情推理與演繹推理(解析版) 題型:填空題

如圖是網(wǎng)絡工作者經(jīng)常用來解釋網(wǎng)絡運作的蛇形模型:數(shù)字1出現(xiàn)在第1行;數(shù)字2,3出現(xiàn)在第2行;數(shù)字6,5,4(從左至右)出現(xiàn)在第3行;數(shù)字7,8,9,10出現(xiàn)在第4行,依此類推,則(1)按網(wǎng)絡運作順序第n行第1個數(shù)字(如第2行第1個數(shù)字為2,第3行第1個數(shù)字為4,…)是________;(2)第63行從左至右的第4個數(shù)字應是________.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-5合情推理與演繹推理(解析版) 題型:選擇題

給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復數(shù)集):

①“若a,b∈R,則a-b=0⇒a=b”,類比推出“若a,b∈C,則a-b=0⇒a=b”;

②“若a,b,c,d∈R,則復數(shù)a+bi=c+di⇒a=c,b=d”,類比推出,“若a,b,c,d∈Q,則a+b=c+d⇒a=c,b=d”;

③“若a,b∈R,則a-b>0⇒a>b”,類比推出“若a,b∈C,則a-b>0⇒a>b”;

④“若x∈R,則|x|<1⇒-1<x<1”,類比推出“若z∈C,則|z|<1⇒-1<z<1”.

其中類比正確的為(  )

A.①② B.①④ C.①②③ D.②③④

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-4基本不等式(解析版) 題型:選擇題

若向量a=(x-1,2),b=(4,y)相互垂直,則9x+3y的最小值為(  )

A.12 B.2 C.3 D.6

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-5數(shù)列的綜合應用(解析版) 題型:選擇題

各項都是正數(shù)的等比數(shù)列{an}的公比q≠1且a2,a3,a1成等差數(shù)列,則=(  )

A. B.

C. D.

 

查看答案和解析>>

同步練習冊答案