4.已知f(x)是定義在R上的函數(shù),f′(x)是其導(dǎo)函數(shù),若滿足f′(-x)=f′(x),f(x+2)=-f(x),則函數(shù)y=f(x)的圖象可能是( 。
A.B.
C.D.

分析 利用排除法,即可得出函數(shù)的圖象.

解答 解:由f(x+2)=-f(x),有$f({\frac{3}{2}})=-f({-\frac{1}{2}})$,排除A;同理f(1)=-f(-1),排除B;
由f'(-x)=f'(x),有f'(-1)=f'(1),即函數(shù)圖象在x=1和x=-1處的切線平行,排除D,
故選C.

點(diǎn)評(píng) 本題考查了函數(shù)的圖象以及函數(shù)單調(diào)性與導(dǎo)數(shù)的關(guān)系,本題要有一定的識(shí)圖能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知條件p:|x+1|>2,條件q:x>a,且¬p是¬q的充分不必要條件,則a的取值范圍是( 。
A.a≤-3B.a≤1C.a≥-1D.a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.有一算法流程圖如圖所示,該算法解決的是( 。
A.輸出不大于990且能被15整除的所有正整數(shù)
B.輸出不大于66且能被15整除的所有正整數(shù)
C.輸出67
D.輸出能被15整除且大于66的正整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2+2n,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿足條件:${c_{n+1}}={a_{c_n}}+{2^n}$,又c1=3,是否存在實(shí)數(shù)λ,使得數(shù)列$\left\{{\frac{{{c_n}+λ}}{2^n}}\right\}$為等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)$y=sin({x+\frac{π}{3}})$的圖象( 。
A.對(duì)稱關(guān)于點(diǎn)$(\frac{π}{6},0)$對(duì)稱B.關(guān)于直線$x=\frac{π}{6}$
C.關(guān)于y軸對(duì)稱D.關(guān)于原點(diǎn)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.點(diǎn)F為拋物線y2=2px的焦點(diǎn),點(diǎn)P在y軸上,PF交拋物線于點(diǎn)Q,且|PQ|=|QF|=1,則p等于$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在數(shù)列{an}中,${a_1}=1,{\;}_{\;}{a_{n+1}}=\frac{{3{a_n}}}{{3+{a_n}}}{\;}_{\;}(n∈{N^+})$,
(1)寫出這個(gè)數(shù)列的前4項(xiàng),并猜想這個(gè)數(shù)列的通項(xiàng)公式;
(2)證明這個(gè)數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知f(x)的定義域?yàn)椋?,+∞),f′(x)為f(x)的導(dǎo)函數(shù),且滿足f(x)>-xf′(x),則不等式f(x+1)>(x-1)f(x2-1)的解集是( 。
A.(1,2)B.(1,+∞)C.(0,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在函數(shù):①y=cos|x|②y=|sinx|③$y=cos(2x+\frac{π}{6})$④$y=tan(2x-\frac{π}{4})$中,最小正周期為π的所有函數(shù)為( 。
A.①②③④B.①②③C.②③D.③④

查看答案和解析>>

同步練習(xí)冊(cè)答案