【題目】已知函數(shù)f(x)= + . (I)求f(x)的最大值;
(Ⅱ)若關(guān)于x的不等式f(x)≥|k﹣2|有解,求實數(shù)k的取值范圍.

【答案】解:(I)∵ + =8≥2 ,∴ ≤4,當且僅當x=4時,等號成立.

由于f2(x)=x+(8﹣x)+2 =8+ ≤8+8=16,當且僅當x=4時,等號成立,

故f(x)的最大值為 4.

(Ⅱ)若關(guān)于x的不等式f(x)≥|k﹣2|有解,則f(x)的最大值大于或等于|k﹣2|,即|k﹣2|≤4,

∴﹣4≤k﹣2≤4,求得﹣2≤k≤6


【解析】(I)由條件利用基本不等式求得 ≤4,根據(jù)f2(x)≤8+8=16,求得(x)的最大值.(Ⅱ)若關(guān)于x的不等式f(x)≥|k﹣2|有解,則f(x)的最大值大于或等于|k﹣2|,即|k﹣2|≤4,由此求得k的范圍.
【考點精析】本題主要考查了基本不等式和絕對值不等式的解法的相關(guān)知識點,需要掌握基本不等式:,(當且僅當時取到等號);變形公式:;含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)X是一個離散型隨機變量,則下列不能成為X的概率分布列的一組數(shù)據(jù)是(
A.0, ,0,0,
B.0.1,0.2,0.3,0.4
C.p,1﹣p(0≤p≤1)
D. , ,…,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,集合A={x|1<2x<8},B={x| +1<0},C={x|a<x<a+1}.
(1)求集合UA∩B;
(2)若B∪C=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)增;命題q:不等式ax2﹣ax+1>0對任意實數(shù)x恒成立.若p∧q假,p∨q真,則a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電腦游戲中,“主角的生存機會往往被預(yù)先設(shè)定,如某槍戰(zhàn)游戲中,“主角被設(shè)定生存機會5,每次生存承受射擊8(被擊中8槍則失去一次生命機會).假設(shè)射擊過程均為單子彈發(fā)射,試為主角耗用生存機會的過程設(shè)計一個算法,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從甲、乙兩種麥苗的試驗田中各抽取6株麥苗測量麥苗的株高,數(shù)據(jù)如下:(單位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;

(2)分別計算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長勢情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從裝有n+1個球(其中n個白球,1個黑球)的口袋中取出m個球(0<m≤n,m,n∈N),共有 種取法.在這 種取法中,可以分成兩類:一類是取出的m個球全部為白球,共有 種取法;另一類是取出的m個球有m﹣1個白球和1個黑球,共有 種取法.顯然 ,即有等式: 成立.試根據(jù)上述思想化簡下列式子: =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為 與p,且乙投球2次均未命中的概率為 . (Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1)+loga(3﹣x)(a>0且a≠1),且f(1)=2
(1)求a的值及f(x)的定義域;
(2)若不等式f(x)≤c的恒成立,求實數(shù)c的取值范圍.

查看答案和解析>>

同步練習冊答案