【題目】電腦游戲中,“主角的生存機(jī)會(huì)往往被預(yù)先設(shè)定,如某槍戰(zhàn)游戲中,“主角被設(shè)定生存機(jī)會(huì)5,每次生存承受射擊8(被擊中8槍則失去一次生命機(jī)會(huì)).假設(shè)射擊過(guò)程均為單子彈發(fā)射,試為主角耗用生存機(jī)會(huì)的過(guò)程設(shè)計(jì)一個(gè)算法,并畫出程序框圖.

【答案】見(jiàn)解析

【解析】試題分析:(方法一)主角的所有生存機(jī)會(huì)共能承受8×5=40槍(第40槍被擊中,則生命結(jié)束).設(shè)主角被擊中槍數(shù)為i,設(shè)計(jì)程序框圖如圖甲所示.

(方法二)電腦中預(yù)設(shè)共承受槍數(shù)為40,主角的生存機(jī)會(huì)以減數(shù)計(jì)數(shù),設(shè)計(jì)程序框圖如圖乙所示.

試題解析:

(方法一)主角的所有生存機(jī)會(huì)共能承受8×5=40槍(第40槍被擊中,則生命結(jié)束).設(shè)主角被擊中槍數(shù)為i,程序框圖如圖甲所示.

(方法二)電腦中預(yù)設(shè)共承受槍數(shù)為40,主角的生存機(jī)會(huì)以減數(shù)計(jì)數(shù),程序框圖如圖乙所示.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等式:sin25°+cos235°+sin5°cos35°= ; sin215°+cos245°+sin15°cos45°= ; sin230°+cos260°+sin30°cos60°= ;由此可歸納出對(duì)任意角度θ都成立的一個(gè)等式,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了普及環(huán)保知識(shí),增強(qiáng)學(xué)生的環(huán)保意識(shí),在全校組織了一次有關(guān)環(huán)保知識(shí)的競(jìng)賽.經(jīng)過(guò)初賽、復(fù)賽,甲、乙兩個(gè)代表隊(duì)(每隊(duì)3人)進(jìn)入了決賽,規(guī)定每人回答一個(gè)問(wèn)題,答對(duì)為本隊(duì)贏得10分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為 ,乙隊(duì)中3人答對(duì)的概率分別為 , ,且各人回答正確與否相互之間沒(méi)有影響,用ξ表示乙隊(duì)的總得分. (Ⅰ)求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)求甲、乙兩隊(duì)總得分之和等于30分且甲隊(duì)獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某池塘養(yǎng)殖著鯉魚和鯽魚,為了估計(jì)這兩種魚的數(shù)量,養(yǎng)殖者從池塘中捕出這兩種魚各1 000,給每條魚做上不影響其存活的標(biāo)記,然后放回池塘,待完全混合后,再每次從池塘中隨機(jī)地捕出1 000條魚,記錄下其中有記號(hào)的魚的數(shù)目,立即放回池塘中.這樣的記錄做了10,并將記錄獲取的數(shù)據(jù)制作成如圖所示的莖葉圖.

(1)根據(jù)莖葉圖計(jì)算有記號(hào)的鯉魚和鯽魚數(shù)目的平均數(shù),并估計(jì)池塘中的鯉魚和鯽魚的數(shù)量;

(2)為了估計(jì)池塘中魚的總質(zhì)量,現(xiàn)按照(1)中的比例對(duì)100條魚進(jìn)行稱重,根據(jù)稱重魚的質(zhì)量介于[0,4.5](單位:千克)之間,將測(cè)量結(jié)果按如下方式分成九組:第一組[0,0.5),第二組[0.5,1),…,第九組[4,4.5].如圖是按上述分組方法得到的頻率分布直方圖的一部分.

估計(jì)池塘中魚的質(zhì)量在3千克以上(3千克)的條數(shù);

若第三組魚的條數(shù)比第二組多7條、第四組魚的條數(shù)比第三組多7,請(qǐng)將頻率分布直方圖補(bǔ)充完整;

的條件下估計(jì)池塘中魚的質(zhì)量的眾數(shù)及池塘中魚的總質(zhì)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為4,∠BAD=60°,AC∩BD=O,將菱形ABCD沿對(duì)角線AC折起,得到三棱錐B﹣ACD,點(diǎn)M是棱BC的中點(diǎn),且DM=2
(1)求證:OM∥平面ABD;
(2)求證:平面DOM⊥平面ABC;
(3)求點(diǎn)B到平面DOM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= + . (I)求f(x)的最大值;
(Ⅱ)若關(guān)于x的不等式f(x)≥|k﹣2|有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是60名男生每分鐘脈搏跳動(dòng)次數(shù)的頻率分布表.

分組

頻數(shù)

頻率

[51.5,57.5)

4

0.067

0.011

[57.5,63.5)

6

0.1

0.017

[63.5,69.5)

11

0.183

0.031

[69.5,75.5)

20

0.333

0.056

[75.5,81.5)

11

0.183

0.031

[81.5,87.5)

5

0.083

0.014

[87.5,93.5]

3

0.05

0.008

(1)作出其頻率分布直方圖;

(2)根據(jù)直方圖的各組中值估計(jì)總體平均數(shù);

(3)估計(jì)每分鐘脈搏跳動(dòng)次數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是 .假設(shè)兩人射擊是否擊中目標(biāo)相互之間沒(méi)有影響;每人各次射擊是否擊中目標(biāo)相互之間也沒(méi)有影響.
(1)求甲射擊4次,至少有1次未擊中目標(biāo)的概率;
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正實(shí)數(shù)x,y,z滿足x+y+z=1, + + =10,則xyz的最大值為

查看答案和解析>>

同步練習(xí)冊(cè)答案