【題目】設(shè)全集.

1)解關(guān)于的不等式

2)記為(1)中不等式的解集,為不等式組的整數(shù)解集,若恰有三個元素,求的取值范圍.

【答案】1)見解析(2

【解析】

1)通過討論a的取值范圍,求出不等式的解集即可.

2)解不等式組求得集合B,通過討論a的范圍求出A的補集,再根據(jù)恰有三個元素,建立不等式求解.

1)因為,

所以,

時,解集為R,

時,解集為 ,

時,,

所以

所以解集為 .

綜上: 時,解集為R

時,解集為 ;

時,解集為 .

2)因為

所以,

所以,

解得 .

因為為不等式組的整數(shù)解集,

所以

時, 不滿足恰有三個元素.

時,不滿足恰有三個元素.

時, ,

因為恰有三個元素,

所以 ,

解得 .

綜上:的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某學?萍脊(jié)需要同學設(shè)計一幅矩形紙板宣傳畫,要求畫面的面積為(如圖中的陰影部分),畫面的上、下各留空白,左、右各留空白.

1)如何設(shè)計畫面的高與寬的尺寸,才能使整個宣傳畫所用紙張面積最小?

2)如果按照第一問這樣制作整個宣傳畫,在科技節(jié)結(jié)束以后,這整個宣傳畫紙板可再次作為某實驗道具,并要求從整個宣傳畫板的四個角各截取一個相同的小正方形,做成一個長方體形的無蓋容器.問截下的小正方形的邊長(也就是該容器的高)是多少時,該容器的容積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最大值;

(2)設(shè),證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M=,對它的非空子集A,可將A中每個元素K都乘以再求和(如A=,可求得和為),則對M的所有非空子集,這些和的總和是__________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為 (t為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).設(shè)的交點為,當變化時,的軌跡為曲線

(1)寫出的普通方程;

(2)以坐標原點為極點,軸正半軸為極軸建立極坐標系,設(shè),的交點,求的極徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年春季以來,在非洲豬瘟、環(huán)保禁養(yǎng)、上行周期等因素形成的共振條件下,豬肉價格連續(xù)暴漲.某養(yǎng)豬企業(yè)為了抓住契機,決定擴大再生產(chǎn),根據(jù)以往的養(yǎng)豬經(jīng)驗預估:在近期的一個養(yǎng)豬周期內(nèi),每養(yǎng)百頭豬,所需固定成本為20萬元,其它為變動成本:每養(yǎng)1百頭豬,需要成本14萬元,根據(jù)市場預測,銷售收入(萬元)與(百頭)滿足如下的函數(shù)關(guān)系:(注:一個養(yǎng)豬周期內(nèi)的總利潤(萬元)=銷售收入-固定成本-變動成本).

1)試把總利潤(萬元)表示成變量(百頭)的函數(shù);

2)當(百頭)為何值時,該企業(yè)所獲得的利潤最大,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)拋物線的焦點為,過點的直線與拋物線相交于兩點,與拋物線的準線相交于點, 的面積之比__________

【答案】

【解析】

由題意可得拋物線的焦點的坐標為,準線方程為。

如圖,設(shè),A,B分別向拋物線的準線作垂線,垂足分別為E,N,

,解得。

代入拋物線解得。

∴直線AB經(jīng)過點與點,

故直線AB的方程為,代入拋物線方程解得

。

,

答案:

點睛:

在解決與拋物線有關(guān)的問題時,要注意拋物線的定義在解題中的應(yīng)用。拋物線定義有兩種用途:一是當已知曲線是拋物線時,拋物線上的點M滿足定義它到準線的距離為d,|MF|d,可解決有關(guān)距離、最值、弦長等問題;二是利用動點滿足的幾何條件符合拋物線的定義,從而得到動點的軌跡是拋物線.

型】填空
結(jié)束】
17

【題目】已知三個內(nèi)角所對的邊分別是,若.

1)求角;

2)若的外接圓半徑為2,求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面,為棱的中點.,,.

1)求證:平面

2)在棱上是否存在點,使得平面平面?如果存在,求此時的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱中,各棱長均為4, 、分別是的中點.

(1)求證:平面;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

同步練習冊答案