【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為 (t為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).設(shè)的交點(diǎn)為,當(dāng)變化時(shí),的軌跡為曲線

(1)寫出的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè),的交點(diǎn),求的極徑.

【答案】(1);(2).

【解析】

(1)分別消掉參數(shù)t與m可得直線l1與直線l2的普通方程為y=k(x-2)①與x=-2+ky②;聯(lián)立①②,消去k可得C的普通方程為x2-y2=4;

(2)將l的極坐標(biāo)方程與曲線C的極坐標(biāo)方程聯(lián)立,可得關(guān)于θ的方程,解得tanθ,即可求得l與C的交點(diǎn)M的極徑為ρ

(1)消去參數(shù)t,得l1的普通方程l1yk(x-2);

消去參數(shù)m,得l2的普通方程l2y (x+2). 設(shè)P(x,y),由題設(shè)得

消去k,得x2y2=4(y≠0),所以C的普通方程為x2y2=4(y≠0).

(2)C的極坐標(biāo)方程為ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),

聯(lián)立得cos θ-sin θ=2(cos θ+sin θ).

故tan θ=-,從而cos2θ,sin2θ.

代入ρ2(cos2θ-sin2θ)=4,得ρ2=5,所以lC的交點(diǎn)M的極徑為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),石家莊經(jīng)濟(jì)快速發(fā)展,躋身新三線城市行列,備受全國(guó)矚目.無(wú)論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國(guó)的米字形高鐵路網(wǎng),石家莊的交通優(yōu)勢(shì)在同級(jí)別的城市內(nèi)無(wú)能出其右.為了調(diào)查石家莊市民對(duì)出行的滿意程度,研究人員隨機(jī)抽取了1000名市民進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如下的頻率分布直方圖,其中.

1)求,的值;

2)求被調(diào)查的市民的滿意程度的平均數(shù),中位數(shù)(保留小數(shù)點(diǎn)后兩位),眾數(shù);

3)若按照分層抽樣從中隨機(jī)抽取8人,再?gòu)倪@8人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼吸酒精含量閥值與檢驗(yàn)》國(guó)家標(biāo)準(zhǔn),新標(biāo)準(zhǔn)規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車,經(jīng)過(guò)反復(fù)試驗(yàn),喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”如下:

該函數(shù)模型如下:

根據(jù)上述條件,回答以下問(wèn)題:

(1)試計(jì)算喝1瓶啤酒后多少小時(shí)血液中的酒精含量達(dá)到最大值?最大值是多少?

(2)試計(jì)算喝1瓶啤酒后多少小時(shí)后才可以駕車?(時(shí)間以整小時(shí)計(jì)算)

(參數(shù)數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列滿足,.

1)求的通項(xiàng)公式;

2)設(shè)等比數(shù)列滿足,,問(wèn):與數(shù)列的第幾項(xiàng)相等?

3)若數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

若函數(shù)處的切線平行于直線,求實(shí)數(shù)a的值

)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);

)在()的條件下,若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集.

1)解關(guān)于的不等式

2)記為(1)中不等式的解集,為不等式組的整數(shù)解集,若恰有三個(gè)元素,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鮮奶店每天購(gòu)進(jìn)30瓶鮮牛奶,且當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:瓶,n∈N)的函數(shù)解析式(n∈N).鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶)繪制出如下的柱形圖(例如:日需求量為25瓶時(shí),頻數(shù)為5):

(1)求這100天的日利潤(rùn)(單位:元)的平均數(shù);

(2)以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點(diǎn).

(Ⅰ)求證: ∥平面

(Ⅱ)若,,

求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國(guó)人民發(fā)出的口號(hào).某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

試銷單價(jià)x()

4

5

6

7

8

產(chǎn)品銷量y()

q

85

82

80

75

已知

1)求出q的值;

2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價(jià)x(元)的線性回歸方程

3)假設(shè)試銷單價(jià)為10元,試估計(jì)該產(chǎn)品的銷量.

查看答案和解析>>

同步練習(xí)冊(cè)答案