【題目】某市為廣泛開(kāi)展垃圾分類(lèi)的宣傳教育和倡導(dǎo)工作,使市民樹(shù)立垃圾分類(lèi)的環(huán)保意識(shí),學(xué)會(huì)垃圾分類(lèi)的知識(shí),特舉辦了“垃圾分類(lèi)知識(shí)競(jìng)賽".據(jù)統(tǒng)計(jì),在為期1個(gè)月的活動(dòng)中,共有兩萬(wàn)人次參與網(wǎng)絡(luò)答題.市文明實(shí)踐中心隨機(jī)抽取100名參與該活動(dòng)的市民,以他們單次答題得分作為樣本進(jìn)行分析,由此得到如圖所示的頻率分布直方圖:
(1)求圖中a的值及參與該活動(dòng)的市民單次挑戰(zhàn)得分的平均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表);
(2)若垃圾分類(lèi)答題挑戰(zhàn)賽得分落在區(qū)間之外,則可獲得一等獎(jiǎng)獎(jiǎng)勵(lì),其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得,若某人的答題得分為96分,試判斷此人是否獲得一等獎(jiǎng);
(3)為擴(kuò)大本次“垃圾分類(lèi)知識(shí)競(jìng)賽”活動(dòng)的影響力,市文明實(shí)踐中心再次組織市民組隊(duì)參場(chǎng)有獎(jiǎng)知識(shí)競(jìng)賽,競(jìng)賽共分五輪進(jìn)行,已知“光速隊(duì)”與“超能隊(duì)”五輪的成績(jī)?nèi)缦卤恚?/span>
成績(jī) | 第一輪 | 第二輪 | 第三輪 | 第四輪 | 第五輪 |
“光速隊(duì)” | 93 | 98 | 94 | 95 | 90 |
“超能隊(duì)” | 93 | 96 | 97 | 94 | 90 |
①分別求“光速隊(duì)”與“超能隊(duì)”五輪成績(jī)的平均數(shù)和方差;
②以上述數(shù)據(jù)為依據(jù),你認(rèn)為"光速隊(duì)”與“超能隊(duì)”的現(xiàn)場(chǎng)有獎(jiǎng)知識(shí)競(jìng)賽成績(jī)誰(shuí)更穩(wěn)定?
【答案】(1),(分);(2)此人未獲得一等獎(jiǎng);(3)①“光速隊(duì)”平均數(shù)為,方差,“超能隊(duì)”平均數(shù)為,方差為;②“超能隊(duì)”的現(xiàn)場(chǎng)有獎(jiǎng)知識(shí)競(jìng)賽成績(jī)更穩(wěn)定.
【解析】
(1)由各組的頻率和為1求出a的值;平均成績(jī)等于各組的中間值與其頻率積的和;
(2)將(1)求出的平均值和代入,從而可判斷96是否在此區(qū)間;
(3)①由表中的數(shù)據(jù)直接求平均數(shù)和方差即可;②比較兩個(gè)方差的大小,方差小的成績(jī)更穩(wěn)定.
(1)由頻率分布直方圖可知,解得;
參與該活動(dòng)的市民單次挑戰(zhàn)得分的平均值的平均成績(jī)?yōu)?/span>(分).
(2)由(1)知,區(qū)間,而,
故此人未獲得一等獎(jiǎng);
(3)①“光速隊(duì)”五輪成績(jī)的平均數(shù)為,
方差為.
“超能隊(duì)”五輪成績(jī)的平均數(shù)為,
方差為.
②評(píng)價(jià):從方差數(shù)據(jù)來(lái)看,“超能隊(duì)”的現(xiàn)場(chǎng)有獎(jiǎng)知識(shí)競(jìng)賽成績(jī)更穩(wěn)定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),左焦點(diǎn)、右焦點(diǎn)都在軸上,點(diǎn)是橢圓上的動(dòng)點(diǎn),的面積的最大值為,在軸上方使成立的點(diǎn)只有一個(gè).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的兩直線(xiàn),分別與橢圓交于點(diǎn),和點(diǎn),,且,比較與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)的焦點(diǎn)為F,準(zhǔn)線(xiàn)為,交x軸于點(diǎn)A,并截圓所得弦長(zhǎng)為,M為平面內(nèi)動(dòng)點(diǎn),△MAF周長(zhǎng)為6.
(1)求拋物線(xiàn)方程以及點(diǎn)M的軌跡的方程;
(2)“過(guò)軌跡的一個(gè)焦點(diǎn)作與軸不垂直的任意直線(xiàn)”交軌跡于兩點(diǎn),線(xiàn)段的垂直平分線(xiàn)交軸于點(diǎn),則為定值,且定值是”.命題中涉及了這么幾個(gè)要素:給定的圓錐曲線(xiàn),過(guò)該圓錐曲線(xiàn)焦點(diǎn)的弦,的垂直平分線(xiàn)與焦點(diǎn)所在的對(duì)稱(chēng)軸的焦點(diǎn),的長(zhǎng)度與、兩點(diǎn)間距離的比值.試類(lèi)比上述命題,寫(xiě)出一個(gè)關(guān)于拋物線(xiàn)的類(lèi)似的正確命題,并加以證明.
(3)試推廣(2)中的命題,寫(xiě)出關(guān)于拋物線(xiàn)的一般性命題(不必證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從一批蘋(píng)果中,隨機(jī)抽取50個(gè),其重量(單位:克)的頻數(shù)分布表如下:
(1)根據(jù)頻數(shù)分布表計(jì)算蘋(píng)果的重量在的頻率;
(2)用分層抽樣的方法從重量在和的蘋(píng)果中共抽取4個(gè),其中重量在的有幾個(gè)?
(3)在(2)中抽出的4個(gè)蘋(píng)果中,任取2個(gè),寫(xiě)出所有可能的結(jié)果,并求重量在和中各有1個(gè)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,其中常數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的范圍;
(3)設(shè),在區(qū)間內(nèi)是否存在區(qū)間,使函數(shù)在區(qū)間的值域也是?請(qǐng)給出結(jié)論,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若函數(shù)的最小值為2,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處取到極值為.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若不等式在上恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),對(duì)任意,都有.
(1)求實(shí)數(shù)m的取值范圍;
(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com