【題目】從一批蘋果中,隨機(jī)抽取50個,其重量(單位:克)的頻數(shù)分布表如下:

1)根據(jù)頻數(shù)分布表計算蘋果的重量在的頻率;

2)用分層抽樣的方法從重量在的蘋果中共抽取4個,其中重量在的有幾個?

3)在(2)中抽出的4個蘋果中,任取2個,寫出所有可能的結(jié)果,并求重量在中各有1個的概率.

【答案】10.4;(21;(3)見解析.

【解析】

1)用蘋果的重量在的頻率除以樣本容量,即為所求;

2)根據(jù)重量在的頻數(shù)所占的比例,求得重量在的蘋果的個數(shù);

3)用列舉法求出所有的基本事件的個數(shù),再求出滿足條件的個數(shù),即可得到所求事件的概率.

解:(1)蘋果的重量在的頻率為

2)重量在的有(個)

3)設(shè)這4個蘋果中重量在的有1個,記為1,重量在的有3個,分別記為2,3,4,從中任取兩個,可能的情況有:

12),(13),(1,4),(2,3),(2,4),(3,4)共6種,設(shè)任取2 個,重量在中各有1個的事件為A,則事件A包含有(12),(13),(1,4)共3種,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

【答案】C

【解析】設(shè)球半徑為R,圓柱的體積為時圓柱的體積最大為 ,因此材料利用率= ,選C.

點睛:空間幾何體與球接、切問題的求解方法

求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.

型】單選題
結(jié)束】
12

【題目】已知拋物線 在點處的切線與曲線 相切,若動直線分別與曲線相交于、兩點,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線C的焦點到直線l的距離為.

1)求m的值.

2)如圖,已知拋物線C的動弦的中點M在直線l上,過點M且平行于x軸的直線與拋物線C相交于點N,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】健身館某項目收費標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費標(biāo)準(zhǔn)如下:

消費次數(shù)

1

2

3

不少于4

收費比例

0.95

0.90

0.85

0.80

現(xiàn)隨機(jī)抽取了100位會員統(tǒng)計它們的消費次數(shù),得到數(shù)據(jù)如下:

消費次數(shù)

1

2

3

不少于4

頻數(shù)

60

25

10

5

假設(shè)該項目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:

1)估計1位會員至少消費兩次的概率

2)某會員消費4次,求這4次消費獲得的平均利潤;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動點到點的距離與到直線的距離的比值為

1)求動點的軌跡的方程;

2)過點的直線與點的軌跡交于兩點,,設(shè)點,到直線的距離分別為,當(dāng)時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某房地產(chǎn)商建有三棟樓宇,三樓宇間的距離都為2千米,擬準(zhǔn)備在此三樓宇圍成的區(qū)域外建第四棟樓宇,規(guī)劃要求樓宇對樓宇,的視角為,如圖所示,假設(shè)樓宇大小高度忽略不計.

(1)求四棟樓宇圍成的四邊形區(qū)域面積的最大值;

(2)當(dāng)樓宇與樓宇,間距離相等時,擬在樓宇,間建休息亭,在休息亭和樓宇,間分別鋪設(shè)鵝卵石路和防腐木路,如圖,已知鋪設(shè)鵝卵石路、防腐木路的單價分別為,(單位:元千米,為常數(shù)).記,求鋪設(shè)此鵝卵石路和防腐木路的總費用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為廣泛開展垃圾分類的宣傳教育和倡導(dǎo)工作,使市民樹立垃圾分類的環(huán)保意識,學(xué)會垃圾分類的知識,特舉辦了“垃圾分類知識競賽".據(jù)統(tǒng)計,在為期1個月的活動中,共有兩萬人次參與網(wǎng)絡(luò)答題.市文明實踐中心隨機(jī)抽取100名參與該活動的市民,以他們單次答題得分作為樣本進(jìn)行分析,由此得到如圖所示的頻率分布直方圖:

1)求圖中a的值及參與該活動的市民單次挑戰(zhàn)得分的平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點值作代表);

2)若垃圾分類答題挑戰(zhàn)賽得分落在區(qū)間之外,則可獲得一等獎獎勵,其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計算可得,若某人的答題得分為96分,試判斷此人是否獲得一等獎;

3)為擴(kuò)大本次“垃圾分類知識競賽”活動的影響力,市文明實踐中心再次組織市民組隊參場有獎知識競賽,競賽共分五輪進(jìn)行,已知“光速隊”與“超能隊”五輪的成績?nèi)缦卤恚?/span>

成績

第一輪

第二輪

第三輪

第四輪

第五輪

“光速隊”

93

98

94

95

90

“超能隊”

93

96

97

94

90

①分別求“光速隊”與“超能隊”五輪成績的平均數(shù)和方差;

②以上述數(shù)據(jù)為依據(jù),你認(rèn)為"光速隊”與“超能隊”的現(xiàn)場有獎知識競賽成績誰更穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若關(guān)于的方程有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是各項均為正數(shù)的無窮數(shù)列,且滿足,.

1)若,求a的值;

2)設(shè)數(shù)列滿足,其前n項的和為.

①求證:是等差數(shù)列;

②若對于任意的,都存在,使得成立.求證:.

查看答案和解析>>

同步練習(xí)冊答案