【題目】某車間的一臺(tái)機(jī)床生產(chǎn)出一批零件,現(xiàn)從中抽取8件,將其編為, ,…, ,測(cè)量其長(zhǎng)度(單位: ),得到如表中數(shù)據(jù):

其中長(zhǎng)度在區(qū)間內(nèi)的零件為一等品.

(1)從上述8個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;

(2)從一等品零件中,隨機(jī)抽取3個(gè).

①用零件的編號(hào)列出所有可能的抽取結(jié)果;

②求這3個(gè)零件長(zhǎng)度相等的概率.

【答案】(1)(2)①見解析②

【解析】試題分析:

18個(gè)零件中,長(zhǎng)度在區(qū)間內(nèi)的有5個(gè),因此由古典概型概率公式可得;

(2)①任取3個(gè),可按樹形結(jié)構(gòu)寫出所有可能;②在①中寫出的所有可能中長(zhǎng)度相等的有4種,由此可得概率.

試題解析:

(1)由所給數(shù)據(jù)可知,一等品零件共5個(gè),記“從8個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件,則

(2)①一等品零件的編號(hào)為, , , , ,從這5個(gè)一等品零件中隨機(jī)抽取3個(gè),所有可能的結(jié)果有: , , , , , , , 共10種.

②記“從一等品零件中,隨機(jī)抽取3個(gè),且這三個(gè)零件長(zhǎng)度相等”為事件,則所有可能的結(jié)果有: , , 共4種.

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;

2)當(dāng)時(shí),

若對(duì)于任意,恒有,求的取值范圍;

,求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(Ⅰ)求曲線 在點(diǎn) 處的切線方程;
(Ⅱ)若 對(duì) 恒成立,求實(shí)數(shù) 的取值范圍;
(Ⅲ)求整數(shù) 的值,使函數(shù) 在區(qū)間 上有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某中草藥材的銷售量與年份有關(guān),下表是近五年的部分統(tǒng)計(jì)數(shù)據(jù):

年份

2008

2010

2012

2014

2016

銷售量(噸)

114

115

116

116

114

(1)利用所給數(shù)據(jù)求年銷售量與年份之間的回歸直線方程;

(2)利用(1)中所求出的直線方程預(yù)測(cè)該地2018年的中草藥的銷售量.

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍(縱坐標(biāo)不變),再將得到的圖象向左平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ ]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓

1)過點(diǎn)的圓的切線只有一條,求的值及切線方程;

2)若過點(diǎn)且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長(zhǎng)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)=log2 +a).
(1)當(dāng)a=5時(shí),解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個(gè)元素,求a的取值范圍.
(3)設(shè)a>0,若對(duì)任意t∈[ ,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知三點(diǎn)A(-1,0)、B(t,2)、C(2,1),t∈R,O為坐標(biāo)原點(diǎn)

(I)若△ABC是∠B為直角的直角三角形,求t的值

(Ⅱ)若四邊形ABCD是平行四邊形的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為奇函數(shù),為實(shí)常數(shù).

(1)求的值;

(2)證明:在區(qū)間內(nèi)單調(diào)遞增;

(3)若對(duì)于區(qū)間上的每一個(gè)的值,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案