【題目】類似于平面直角坐標(biāo)系,定義平面斜坐標(biāo)系:設(shè)數(shù)軸、的交點為,與、軸正方向同向的單位向量分別是、,且與的夾角為,其中,由平面向量基本定理:對于平面內(nèi)的向量,存在唯一有序?qū)崝?shù)對,使得,把叫做點在斜坐標(biāo)系中的坐標(biāo),也叫做向量在斜坐標(biāo)系中的坐標(biāo),記為,在平面斜坐標(biāo)系內(nèi),直線的方向向量、法向量、點方向式方程、一般式方程等概念與平面直角坐標(biāo)系內(nèi)相應(yīng)概念以相同方式定義,如時,方程表示斜坐標(biāo)系內(nèi)一條過點,且方向向量為的直線.
(1)若,,,求;
(2)若,已知點和直線;
①求的一個法向量;
②求點到直線的距離.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a為實常數(shù)).
(1)若,作函數(shù)的圖象并寫出單調(diào)減區(qū)間;
(2)當(dāng)時,設(shè)在區(qū)間上的最小值為,求的表達式;
(3)當(dāng)時對于函數(shù)和函數(shù),若對任意的,總存在使成立,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù);
(1)當(dāng)時,若,求的取值范圍;
(2)若定義在上的奇函數(shù)滿足,且當(dāng),,求在上的解析式;
(3)對于(2)中的,若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象相鄰兩條對稱軸之間的距離為,將函數(shù)的圖象向左平移個單位,得到的圖象關(guān)于軸對稱,則( )
A. 函數(shù)的周期為 B. 函數(shù)圖象關(guān)于點對稱
C. 函數(shù)圖象關(guān)于直線對稱 D. 函數(shù)在上單調(diào)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,.
(Ⅰ)求證:平面面;
(Ⅱ)過的平面交于點,若平面把四面體分成體積相等的兩部分,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)解不等式;
(2)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對任意的恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,,.
(1)證明:;
(2)求平面與平面所成銳二面角的余弦值;
(3)點是線段上的動點,當(dāng)直線與所成的角最小時,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+c(a>0),且f(1).
(1)求證:函數(shù)f(x)有兩個不同的零點;
(2)設(shè)x1,x2是函數(shù)f(x)的兩個不同的零點,求|x1﹣x2|的取值范圍;
(3)求證:函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個零點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com