【題目】執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是( )
A.﹣2
B.
C.
D.3
【答案】C
【解析】解:模擬執(zhí)行程序,可得
a= ,k=0
執(zhí)行循環(huán)體,a=3,k=1
不滿足條件k≥100,執(zhí)行循環(huán)體,a=﹣2,k=2
不滿足條件k≥100,執(zhí)行循環(huán)體,a=﹣ ,k=3
不滿足條件k≥100,執(zhí)行循環(huán)體,a= ,k=4
…
觀察規(guī)律可得a的取值周期為4,由于99=24×4+3,可得
不滿足條件k≥100,執(zhí)行循環(huán)體,a= ,k=100,
此時,滿足條件k≥100,退出循環(huán),輸出a的值為 .
故選:C.
【考點精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間.
(2)當(dāng)時,討論函數(shù)與圖象的交點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-2+lnx.
(Ⅰ)若a=1,求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)遞增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是線段EF的中點.
(1)求證AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大小;
(3)試在線段AC上一點P,使得PF與CD所成的角是60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)時代的進步,流量成為手機的附帶品,人們可以利用手機隨時隨地的瀏覽網(wǎng)頁,聊天,看視頻,因此,社會上產(chǎn)生了很多低頭族.某研究人員對該地區(qū)18∽50歲的5000名居民在月流量的使用情況上做出調(diào)查,所得結(jié)果統(tǒng)計如下圖所示:
(Ⅰ)以頻率估計概率,若在該地區(qū)任取3位居民,其中恰有位居民的月流量的使用情況
在300M∽400M之間,求的期望;
(Ⅱ)求被抽查的居民使用流量的平均值;
(Ⅲ)經(jīng)過數(shù)據(jù)分析,在一定的范圍內(nèi),流量套餐的打折情況與其日銷售份數(shù)成線性相關(guān)
關(guān)系,該研究人員將流量套餐的打折情況與其日銷售份數(shù)的結(jié)果統(tǒng)計如下表所示:
折扣 | 1折 | 2折 | 3折 | 4折 | 5折 |
銷售份數(shù) | 50 | 85 | 115 | 140 | 160 |
試建立關(guān)于的的回歸方程.
附注:回歸方程中斜率和截距的最小二乘估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面為矩形,且,為的中點.
(1)過點作一條射線,使得,求證:平面 平面;
(2)求二面角的余弦值的絕對值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.若ξ服從正態(tài)分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分條件
C.直線ax+y+2=0與ax﹣y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分) 命題實數(shù)x滿足(其中),命題實數(shù)滿足
(Ⅰ)若,且為真,求實數(shù)的取值范圍;
(Ⅱ)若是 的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com