【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是線段EF的中點(diǎn).

(1)求證AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大小;
(3)試在線段AC上一點(diǎn)P,使得PF與CD所成的角是60°.

【答案】
(1)證明:建立如圖所示的空間直角坐標(biāo)系

設(shè)AC∩BD=N,連接NE,

則點(diǎn)N、E的坐標(biāo)分別是 、(0,0,1),

= ,

又點(diǎn)A、M的坐標(biāo)分別是

、

=

= 且NE與AM不共線,

∴NE∥AM

又∵NE平面BDE,AM平面BDE,

∴AM∥平面BDF


(2)解:∵AF⊥AB,AB⊥AD,AF∩AD=A,

∴AB⊥平面ADF

為平面DAF的法向量

= =0,

= =0得 , ∴NE為平面BDF的法向量

∴cos< >=

的夾角是60°

即所求二面角A﹣DF﹣B的大小是60°


(3)解:設(shè)P(x,x,0), , ,則

cos =| |,解得 (舍去)

所以當(dāng)點(diǎn)P為線段AC的中點(diǎn)時(shí),直線PF與CD所成的角為60°


【解析】(I)以C為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),進(jìn)而求出直線AM的方向向量及平面BDE的法向量,易得這兩個(gè)向量垂直,即AM∥平面BDE;(2)求出平面ADF與平面BDF的法向量,利用向量夾角公式求出夾角,即可得到二面角A﹣DF﹣B的大;(3)點(diǎn)P為線段AC的中點(diǎn)時(shí),直線PF與CD所成的角為60°,我們?cè)O(shè)出點(diǎn)P的坐標(biāo),并由此求出直線PF與CD的方向向量,再根據(jù)PF與CD所成的角是60°構(gòu)造方程組,解方程即可得到結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用向量語(yǔ)言表述線線的垂直、平行關(guān)系和用空間向量求直線間的夾角、距離的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握設(shè)直線的方向向量分別是,則要證明,只需證明,即;則要證明,只需證明,即;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= lnxx,其中a>0.

(1)f(x)(0,+∞)上存在極值點(diǎn),求a的取值范圍;

(2)設(shè)a(1,e],當(dāng)x1(0,1),x2(1,+∞)時(shí),記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)準(zhǔn)備在開(kāi)學(xué)時(shí)舉行一次大學(xué)一年級(jí)學(xué)生座談會(huì),擬邀請(qǐng)20名來(lái)自本校機(jī)械工程學(xué)院、海洋學(xué)院、醫(yī)學(xué)院、經(jīng)濟(jì)學(xué)院的學(xué)生參加,各學(xué)院邀請(qǐng)的學(xué)生數(shù)如下表所示:

學(xué)院

機(jī)械工程學(xué)院

海洋學(xué)院

醫(yī)學(xué)院

經(jīng)濟(jì)學(xué)院

人數(shù)

4

6

4

6

(Ⅰ)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意兩個(gè)均不屬于同一學(xué)院的概率;
(Ⅱ)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,設(shè)來(lái)自醫(yī)學(xué)院的學(xué)生數(shù)為ξ,求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(Ⅰ)若a=﹣1,證明:函數(shù)f(x)是(0,+∞)上的減函數(shù);
(Ⅱ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x﹣y=0平行,求a的值;
(Ⅲ)若x>0,證明: (其中e=2.71828…是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,AD= ,P矩形內(nèi)的一點(diǎn),且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是(
A.﹣2
B.
C.
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線的準(zhǔn)線與軸交于,拋物線的焦點(diǎn),以為焦點(diǎn),離心率的橢圓與拋物線的一個(gè)交點(diǎn)為;自引直線交拋物線于兩個(gè)不同的點(diǎn),設(shè).

(1)求拋物線的方程及橢圓的方程;

(2),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】屆亞運(yùn)會(huì)于日至日在中國(guó)廣州進(jìn)行,為了做好接待工作,組委會(huì)招募了名男志愿者和名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有人和人喜愛(ài)運(yùn)動(dòng),其余不喜愛(ài).

根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:


喜愛(ài)運(yùn)動(dòng)

不喜愛(ài)運(yùn)動(dòng)

總計(jì)


10


16


6


14

總計(jì)



30

(2)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為性別與喜愛(ài)運(yùn)動(dòng)有關(guān)?

(3)如果從喜歡運(yùn)動(dòng)的女志愿者中(其中恰有人會(huì)外語(yǔ)),抽取名負(fù)責(zé)翻譯工作,則抽出的志愿者中人都能勝任翻譯工作的概率是多少?

:K2=

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游為了解2015年國(guó)慶節(jié)期間參加某境外旅游線路的游客的人均購(gòu)物消費(fèi)情況,隨機(jī)對(duì)50人做了問(wèn)卷調(diào)查,得如下頻數(shù)分布表:

人均購(gòu)物消費(fèi)情況

[0,2000]

(2000,4000]

(4000,6000]

(6000,8000]

(8000,10000]

額數(shù)

15

20

9

3

3

附:臨界值表參考公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d.

(1)做出這些數(shù)據(jù)的頻率分布直方圖并估計(jì)次境外旅游線路游客的人均購(gòu)物的消費(fèi)平均值;
(2)在調(diào)查問(wèn)卷中有一項(xiàng)是“您會(huì)資助失學(xué)兒童的金額?”,調(diào)查情況如表,請(qǐng)補(bǔ)全如表,并說(shuō)明是否有95%以上的把握認(rèn)為資助數(shù)額多于或少于500元和自身購(gòu)物是否到4000元有關(guān)?

人均購(gòu)物消費(fèi)不超過(guò)4000元

人均購(gòu)物消費(fèi)超過(guò)4000元

合計(jì)

資助超過(guò)500元

30

資助不超過(guò)500元

6

合計(jì)

查看答案和解析>>

同步練習(xí)冊(cè)答案