某尋呼臺(tái)共有客戶3000人,若尋呼臺(tái)準(zhǔn)備了100份小禮品,邀請(qǐng)客戶在指定時(shí)間來領(lǐng)。僭O(shè)任一客戶去領(lǐng)獎(jiǎng)的概率為4%.問:尋呼臺(tái)能否向每一位顧客都發(fā)出獎(jiǎng)品邀請(qǐng)?若能使每一位領(lǐng)獎(jiǎng)人都得到禮品,尋呼臺(tái)至少應(yīng)準(zhǔn)備多少禮品?
考點(diǎn):概率的意義
專題:概率與統(tǒng)計(jì)
分析:根據(jù)題意來領(lǐng)獎(jiǎng)的人數(shù)服從二項(xiàng)分布,然后求其期望就可以了.
解答: 解:設(shè)來領(lǐng)獎(jiǎng)的人數(shù)ξ=k(0,1,2,3,…3000),
所以p(ξ=k)=
k
3000
(0.04)k(1-0.04)3000-k
可見ξ~B(3000,0.04),
所以,Eξ=3000×0.04=120(人)>100(人).
答:不能,尋呼臺(tái)至少應(yīng)準(zhǔn)備120份禮品.
點(diǎn)評(píng):本題主要考查隨機(jī)變量的二次分布和期望,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是
 

①一個(gè)命題的逆命題為真,它的否命題也一定為真;
②“am2<bm2”是“a<b”的充分必要條件;
x>1
y>2
x+y>3
xy>2
的充要條件;
④在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x2-2x≤0},集合B={y|y=ex,x∈R},那么(∁UA)∩B=( 。
A、{x|x>2}
B、{x|x<0}
C、{x|0<x≤1}
D、{x|1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三條邊為a,b,c,且a,b,c分別是∠A,∠B,∠C的對(duì)邊,若a2<b2+c2,(a為最長邊),求∠A的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:x2-4mx+1=0有實(shí)數(shù)解,命題q:?x0∈R,使得mx02-2x0-1>0成立.
(1)若命題p為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題?p∨?q為真命題,且命題p∨q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在一個(gè)二面角的棱上有兩個(gè)點(diǎn)A,B,線段AC,BD分別在這個(gè)二面角的兩個(gè)面內(nèi),并且都垂直于棱AB,AB=4cm,AC=6cm,BD=8cm,CD=2
17
cm,則這個(gè)二面角的度數(shù)為( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,4,x)(x>0),
b
=(2,y,2),若|
a
|=3
5
,且
a
b
,求x+2y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a=sin1,b=sin2,c=sin3,a,b和c大小關(guān)系
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx-
a
x
(a∈R)
(1)若a<0且f(x)在[1,e]的最小值為
3
2
,求a的值;
(2)若f(x)<x2在(1,+∞)上恒成立,試求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案