(Ⅰ)已知雙曲線C與雙曲線有相同的漸近線,且一條準(zhǔn)線為,求雙曲線C的方程;
(Ⅱ)已知圓截軸所得弦長為6,圓心在直線上,并與軸相切,求該圓的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
解答題(本題共10分.請寫出文字說明, 證明過程或演算步驟):
已知是橢圓上一點(diǎn),,是橢圓的兩焦點(diǎn),且滿足
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)、是橢圓上任兩點(diǎn),且直線、的斜率分別為、,若存在常數(shù)使,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知橢圓C:=1(a>b>0)的離心率為,以原點(diǎn)為圓點(diǎn),橢圓的短半軸為半徑的圓與直線x-y+=0相切。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對稱的任意兩個(gè)不同的點(diǎn),連接PB交隨圓C于另一點(diǎn)E,證明直線AE與x軸相交于定點(diǎn)Q.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中點(diǎn)在原點(diǎn)且過點(diǎn),焦點(diǎn)在坐標(biāo)軸上,長軸長是短軸長的3倍,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)雙曲線的離心率等于,且與橢圓有公共焦點(diǎn),
①求此雙曲線的方程.
②若拋物線的焦點(diǎn)到準(zhǔn)線的距離等于橢圓的焦距,求該拋物線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn),直線交橢圓于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不過點(diǎn),求證:直線與軸圍成一個(gè)等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三頂點(diǎn)的距離分別為,且滿足,求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,橢圓的離心率為,直線和所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ) 設(shè)直線與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若拋物線的頂點(diǎn)在原點(diǎn),其準(zhǔn)線方程過雙曲線-=1(,)的一個(gè)焦點(diǎn),如果拋物線與雙曲線交于(,),(,-),求兩曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com