(本小題滿分12分)如圖,橢圓的離心率為,直線和所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標準方程;
(Ⅱ) 設(shè)直線與橢圓M有兩個不同的交點與矩形ABCD有兩個不同的交點.求的最大值及取得最大值時m的值.
(I) .(II) 時,取得最大值.
解析試題分析:(1)根據(jù)已知中的離心率和矩形的面積得到a,b,c的方程,進而求解橢圓方程。
(2)將已知中的直線方程與橢圓方程聯(lián)立方程組,結(jié)合韋達定理得到根與系數(shù)的關(guān)系,那么得到弦長公式,同時以及得到點S,T的坐標,進而得到比值。
(I)……①
矩形ABCD面積為8,即……②
由①②解得:, ∴橢圓M的標準方程是.
(II),
設(shè),則,
當 .
當時,有,
,
其中,由此知當,即時,取得最大值.
考點:本試題主要考查了橢圓方程的求解以及直線與橢圓位置關(guān)系的綜合運用。
點評:解決該試題的關(guān)鍵是運用代數(shù)的方法來解決解析幾何問題時,解析幾何的本質(zhì)。能結(jié)合橢圓的性質(zhì)得到其方程,并聯(lián)立方程組,結(jié)合韋達定理和判別式的到比值。
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓G:的右焦點F為,G上的點到點F的最大距離為,斜率為1的直線與橢圓G交與、兩點,以AB為底邊作等腰三角形,頂點為P(-3,2)
(1)求橢圓G的方程;
(2)求的面積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(Ⅰ)已知雙曲線C與雙曲線有相同的漸近線,且一條準線為,求雙曲線C的方程;
(Ⅱ)已知圓截軸所得弦長為6,圓心在直線上,并與軸相切,求該圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分)已知拋物線C:過點A
(1)求拋物線C 的方程;
(2)直線過定點,斜率為,當取何值時,直線與拋物線C只有一個公共點。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分) 已知橢圓E:=1(a>b>o)的離心率e=,且經(jīng)過點(,1),O為坐標原點。
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)圓O是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點,過M作圓O的兩條切線,切點分別為P、Q,當∠PMQ=60°時,求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分) 如圖,設(shè)P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且MD=PD.
(Ⅰ)當P在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓O:交軸于A,B兩點,曲線C是以為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點連結(jié)PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.
(1)求橢圓C的標準方程;
(2)若點P的坐標為(1,1),求證:直線PQ與圓相切;
(3)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com