【題目】關(guān)于函數(shù)有下述四個結(jié)論:

是偶函數(shù);②在區(qū)間單調(diào)遞減;

個零點(diǎn);④的最大值為.

其中所有正確結(jié)論的編號是(

A.①②④B.②④C.①④D.①③

【答案】A

【解析】

利用偶函數(shù)的定義可判斷出命題①的正誤;去絕對值,利用余弦函數(shù)的單調(diào)性可判斷出命題②的正誤;求出函數(shù)在區(qū)間上的零點(diǎn)個數(shù),并利用偶函數(shù)的性質(zhì)可判斷出命題③的正誤;由取最大值知,然后去絕對值,即可判斷出命題④的正誤.

對于命題①,函數(shù)的定義域?yàn)?/span>,且,則函數(shù)為偶函數(shù),命題①為真命題;

對于命題②,當(dāng)時(shí),,則,此時(shí),函數(shù)在區(qū)間上單調(diào)遞減,命題②正確;

對于命題③,當(dāng)時(shí),,則,

當(dāng)時(shí),,則,

由偶函數(shù)的性質(zhì)可知,當(dāng)時(shí),,則函數(shù)上有無數(shù)個零點(diǎn),命題③錯誤;

對于命題④,若函數(shù)取最大值時(shí),,則

,當(dāng)時(shí),函數(shù)取最大值,命題④正確.

因此,正確的命題序號為①②④.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)證明:當(dāng)時(shí),

(2)若當(dāng)時(shí), ,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是

A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某共享單車經(jīng)營企業(yè)欲向甲市投放單車,為制定適宜的經(jīng)營策略,該企業(yè)首先在已投放單車的乙市進(jìn)行單車使用情況調(diào)查.調(diào)查過程分隨機(jī)問卷、整理分析及開座談會三個階段.在隨機(jī)問卷階段,,兩個調(diào)查小組分赴全市不同區(qū)域發(fā)放問卷并及時(shí)收回;在整理分析階段,兩個調(diào)查小組從所獲取的有效問卷中,針對15至45歲的人群,按比例隨機(jī)抽取了300份,進(jìn)行了數(shù)據(jù)統(tǒng)計(jì),具體情況如下表:

組別

年齡

組統(tǒng)計(jì)結(jié)果

組統(tǒng)計(jì)結(jié)果

經(jīng)常使用單車

偶爾使用單車

經(jīng)常使用單車

偶爾使用單車

27人

13人

40人

20人

23人

17人

35人

25人

20人

20人

35人

25人

(1)先用分層抽樣的方法從上述300人中按“年齡是否達(dá)到35歲”抽出一個容量為60人的樣本,再用分層抽樣的方法將“年齡達(dá)到35歲”的被抽個體數(shù)分配到“經(jīng)常使用單車”和“偶爾使用單車”中去.

①求這60人中“年齡達(dá)到35歲且偶爾使用單車”的人數(shù);

②為聽取對發(fā)展共享單車的建議,調(diào)查組專門組織所抽取的“年齡達(dá)到35歲且偶爾使用單車”的人員召開座談會.會后共有3份禮品贈送給其中3人,每人1份(其余人員僅贈送騎行優(yōu)惠券).已知參加座談會的人員中有且只有4人來自組,求組這4人中得到禮品的人數(shù)的分布列和數(shù)學(xué)期望;

(2)從統(tǒng)計(jì)數(shù)據(jù)可直觀得出“是否經(jīng)常使用共享單車與年齡(記作歲)有關(guān)”的結(jié)論.在用獨(dú)立性檢驗(yàn)的方法說明該結(jié)論成立時(shí),為使犯錯誤的概率盡可能小,年齡應(yīng)取25還是35?請通過比較的觀測值的大小加以說明.

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn), ,動點(diǎn)滿足.

1)求動點(diǎn)的軌跡的方程;

(2)若直線與軌跡有且僅有一個公共點(diǎn),且與直線相交于點(diǎn),求證:以為直徑的圓過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車公司最近研發(fā)了一款新能源汽車,并在出廠前對100輛汽車進(jìn)行了單次最大續(xù)航里程的測試,F(xiàn)對測試數(shù)據(jù)進(jìn)行分析,得到如圖所示的頻率分布直方圖:

1)估計(jì)這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).

2)根據(jù)大量的汽車測試數(shù)據(jù),可以認(rèn)為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問中樣本標(biāo)準(zhǔn)差的近似值為50。用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.

參考數(shù)據(jù):若隨機(jī)變量服從正態(tài)分布,則,.

3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動,客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進(jìn),若遙控車最終停在“勝利大本營”,則可獲得購車優(yōu)惠券3萬元。已知硬幣出現(xiàn)正、反面的概率都是0.5方格圖上標(biāo)有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動一次。若擲出正面,遙控車向前移動一格(從)若擲出反面遙控車向前移動兩格(從),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時(shí),游戲結(jié)束。設(shè)遙控車移到第格的概率為P試證明是等比數(shù)列,并求參與游戲一次的顧客獲得優(yōu)惠券金額的期望值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次電視節(jié)目的答題游戲中,題型為選擇題,只有AB兩種結(jié)果,其中某選手選擇正確的概率為p,選擇錯誤的概率為q,若選擇正確則加1分,選擇錯誤則減1分,現(xiàn)記該選手答完n道題后總得分為”.

1)當(dāng)時(shí),記,求的分布列及數(shù)學(xué)期望;

2)當(dāng),時(shí),求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓周率是一個在數(shù)學(xué)及物理學(xué)中普遍存在的數(shù)學(xué)常數(shù),它既常用又神秘,古今中外很多數(shù)學(xué)家曾研究它的計(jì)算方法.下面做一個游戲:讓大家各自隨意寫下兩個小于1的正數(shù)然后請他們各自檢查一下,所得的兩數(shù)與1是否能構(gòu)成一個銳角三角形的三邊,最后把結(jié)論告訴你,只需將每個人的結(jié)論記錄下來就能算出圓周率的近似值.假設(shè)有個人說“能”,而有個人說“不能”,那么應(yīng)用你學(xué)過的知識可算得圓周率的近似值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,過軸的垂線交橢圓于點(diǎn)(點(diǎn)軸上方),斜率為的直線交橢圓,兩點(diǎn),過點(diǎn)作直線交橢圓于點(diǎn),且,直線軸于點(diǎn).

(1)設(shè)橢圓的離心率為,當(dāng)點(diǎn)為橢圓的右頂點(diǎn)時(shí),的坐標(biāo)為,求的值.

(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案