【題目】已知函數(shù).

1)求的最小正周期;

2)求的單調(diào)增區(qū)間;

3)若,求的最大值與最小值.

【答案】1;(2[kπ,kπ+],kZ;(3fx=2,fx=﹣1

【解析】

(1)利用三角恒等變換,化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結(jié)論;

(2)利用正弦函數(shù)的單調(diào)性,求出fx)的單調(diào)增區(qū)間;

(3)利用正弦函數(shù)的定義域和值域,求得當(dāng)時(shí),fx)的最大值與最小值.

1)∵函數(shù)fx)=sin4x+2sinxcosxcos4x=(sin4xcos4x+sin2x=﹣cos2x+sin2x2sin2x),

fx)的最小正周期為π

2)令2kπ2x2kπ+,求得kπxkπ+,可得fx)的單調(diào)增區(qū)間為[kπkπ+],kZ

3)若,則2x,

當(dāng)2x時(shí),fx=2;當(dāng)2x=時(shí),fx=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知函數(shù),其中,求函數(shù)的圖象恰好經(jīng)過第一、二、三象限的概率;

(2)某校早上8:10開始上課,假設(shè)該校學(xué)生小張與小王在早上7:30~8:00之間到校,且每人到該時(shí)間段內(nèi)到校時(shí)刻是等可能的,求兩人到校時(shí)刻相差10分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)m=1時(shí),若方程在區(qū)間上有唯一的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程為,傾斜角為的直線過點(diǎn).

(1)求曲線的直角坐標(biāo)方程和直線的參數(shù)方程;

(2)設(shè),是過點(diǎn)且關(guān)于直線對(duì)稱的兩條直線,交于兩點(diǎn),交于, 兩點(diǎn). 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,點(diǎn)是曲線上的動(dòng)點(diǎn).點(diǎn)滿足 (為極點(diǎn)).設(shè)點(diǎn)的軌跡為曲線.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,已知直線的參數(shù)方程是,(為參數(shù)).

(1)求曲線的直角坐標(biāo)方程與直線的普通方程;

(2)設(shè)直線交兩坐標(biāo)軸于,兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|1≤x≤3},B={x|x>2}.

Ⅰ)分別求A∩B,(RBA;

Ⅱ)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是兩個(gè)非零平面向量,則有

①若

②若,

③若,則存在實(shí)數(shù)使得

④若存在實(shí)數(shù),使得,四個(gè)命題中真命題的序號(hào)為 __________.(填寫所有真命題的序號(hào))

【答案】①③④

【解析】逐一考查所給的結(jié)論:

①若,則,據(jù)此有:,說法①正確;

②若,則,

,說法②錯(cuò)誤;

③若,則,據(jù)此有:,

由平面向量數(shù)量積的定義有:

則向量反向,故存在實(shí)數(shù),使得,說法③正確;

④若存在實(shí)數(shù),使得,則向量與向量共線,

此時(shí),,

若題中所給的命題正確,則,

該結(jié)論明顯成立.即說法④正確;

綜上可得:真命題的序號(hào)為①③④.

點(diǎn)睛:處理兩個(gè)向量的數(shù)量積有三種方法:利用定義;利用向量的坐標(biāo)運(yùn)算;利用數(shù)量積的幾何意義.具體應(yīng)用時(shí)可根據(jù)已知條件的特征來選擇,同時(shí)要注意數(shù)量積運(yùn)算律的應(yīng)用.

型】填空
結(jié)束】
17

【題目】已知在,,.

(1)求角的大小;

(2)設(shè)數(shù)列滿足,項(xiàng)和為,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>,對(duì)任意、都有,當(dāng)時(shí),,.

1)求;

2)證明:上單調(diào)遞減;

3)解不等式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量.(注:總收益=總成本+利潤(rùn))

(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案