4.雙曲線${x^2}-{\frac{y}{3}^2}$=1的左右兩焦點(diǎn)分別是F1,F(xiàn)2,若點(diǎn)P在雙曲線上,且∠F1PF2為銳角,則點(diǎn)P的橫坐標(biāo)的取值范圍是($\frac{\sqrt{7}}{2}$,+∞)∪(-∞,-$\frac{\sqrt{7}}{2}$).

分析 由題意畫出圖形,以P在雙曲線右支為例,求出∠F1PF2為直角時(shí)P的坐標(biāo),可得∠F1PF2為銳角時(shí)點(diǎn)P的橫坐標(biāo)的取值范圍

解答 解:不妨以P在雙曲線右支為例
由PF1⊥PF2,得|PF1|2+|PF2|2=|F1F2|2=4c2=16,
又|PF1|-|PF2|=2,①
兩邊平方得:|PF1|2+|PF2|2-2|PF1||PF2|=4,
∴|PF1||PF2|=6,②
聯(lián)立①②解得:|PF2|=$\sqrt{7}-1$,
由焦半徑公式得|PF2|=$\sqrt{7}-1$=ex-a,即可得點(diǎn)P的橫坐標(biāo)為$\frac{\sqrt{7}}{2}$,
根據(jù)對(duì)稱性,則點(diǎn)P的橫坐標(biāo)的取值范圍是($\frac{\sqrt{7}}{2},+∞$)$∪(-∞,-\frac{\sqrt{7}}{2}$).
故答案為:是($\frac{\sqrt{7}}{2},+∞$)$∪(-∞,-\frac{\sqrt{7}}{2}$)

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì),考查雙曲線定義的應(yīng)用,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知向量$\overrightarrow m=(1,\sqrt{3}sin(wx+\frac{π}{6})),\overrightarrow n=(2coswx,y)(0<w<2)$,且$\overrightarrow m∥\overrightarrow n$,函數(shù)y=f(x)的圖象過(guò)點(diǎn)$(\frac{5π}{12},\frac{{\sqrt{3}}}{2})$.
(1)求w的值及函數(shù)f(x)的最小正周期;
(2)將y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,已知$g(\frac{α}{2})=\frac{{5\sqrt{3}}}{6}$,求$cos(2α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}y-x≥0\\ x-2y+2≥0\\ x≥0\end{array}\right.$若目標(biāo)函數(shù)z=mx+y(m>0)的最大值為6,則m的值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≤0\\ x+y-3≥0\\ y≤4\end{array}\right.$,則目標(biāo)函數(shù)z=2x-y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x0,滿足f(-x0)=-f(x0),則稱f(x)為“M類函數(shù)”.
(1)已知函數(shù)f(x)=sin(x+$\frac{π}{3}$),試判斷f(x)是否為“M類函數(shù)”?并說(shuō)明理由;
(2)設(shè)f(x)=2x+m是定義在[-1,1]上的“M類函數(shù)”,求實(shí)數(shù)m的最小值;
(3)若f(x)=$\left\{\begin{array}{l}{log_2}({x^2}-2mx)\\-3\end{array}\right.\begin{array}{l}{,\;\;x≥2}\\{,\;\;x<2}\end{array}$為其定義域上的“M類函數(shù)”,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.曲線y=1+$\frac{1}{1-x}$的對(duì)稱軸的方程是( 。
A.y=-x與y=x+2B.y=x與y=-x-2C.y=-x與y=x-2D.y=x與y=-x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)P(x,y),其中x,y∈N,則滿足x+y≤4的點(diǎn)P的個(gè)數(shù)為15.一般地,滿足x+y≤n(n∈N)的點(diǎn)P的個(gè)數(shù)應(yīng)為$\frac{(n+1)(n+2)}{2}$個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.(2x+$\frac{1}{x}$-1)5的展開式中常數(shù)項(xiàng)是-161.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=2$\sqrt{2}$cos($\frac{π}{4}$-θ)
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)已知直線l過(guò)點(diǎn)P(1,0)且與曲線C交于A,B兩點(diǎn),若|PA|+|PB|=$\sqrt{5}$,求直線l的傾斜角α.

查看答案和解析>>

同步練習(xí)冊(cè)答案