精英家教網 > 高中數學 > 題目詳情
15.以下三個命題
①設回歸方程為$\stackrel{∧}{y}$=3-3x,則變量x增加一個單位時,y平均增加3個單位;
②兩個隨機變量的線性相關性越強,則相關系數的絕對值越接近于1;
③在某項測量中,測量結果ξ服從正態(tài)分布N (1,σ2) (σ>0).若ξ在(0,1)內取值的概率為0.4,則ξ在(0,2)內取值的概率為0.8.
其中真命題的個數為( 。
A.0B.1C.2D.3

分析 ①,利用一次函數的單調性判定;
②,利用相關性系數r的意義去判斷;
③,利用正態(tài)分布曲線的性質判.

解答 解:對于①,變量x增加一個單位時,y平均減少3個單位,故錯;
對于②,根據線性相關系數r的意義可知,當兩個隨機變量線性相關性越強,r的絕對值越接近于1,故正確;
對于③,在某項測量中,測量結果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內取值的概率為0.4,
則ξ在(0,2)內取值的概率為0.8,符合正態(tài)分布的特點,故正確.
故選:C.

點評 本題考查了兩個隨機變量的線性相關性的性質、正態(tài)分布的對稱性,考查了推理能力,屬中檔題

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

5.邊長為2的正方形ABCD所在的平面與△CDE所在的平面交于CD,且AE⊥平面CDE,M為AD上的點,AE=1,AM=$\frac{1}{2}$.
(Ⅰ)求證:EM⊥BD;
(Ⅱ)設點F是棱BC上一點,若二面角A-DE-F的余弦值為$\frac{\sqrt{10}}{10}$,試確定點F在BC上的位置.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.已知△ABC的內角A,B,C成等差數列,對應邊a,b,c成等比數列,那么△ABC的形狀為等邊三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.命題“?x0>0,使得(x0+1)${e}^{{x}_{0}}$>1”的否定是(  )
A.?x>0,總有(x+1)ex≤1B.?x≤0,總有(x+1)ex≤1
C.?x0≤0,總有(x0+1)${e}^{{x}_{0}}$≤1D.?x0>0,使得(x0+1)${e}^{{x}_{0}}$≤1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.若$\frac{π}{2}$<α<π,sinα=$\frac{3}{5}$,則tan$\frac{α}{2}$=3.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.國內某知名連鎖店分店開張營業(yè)期間,在固定的時間段內消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參加抽獎活動的人數越來越多,該分店經理對開業(yè)前7天參加抽獎活動的人數進行統(tǒng)計,y表示開業(yè)第x天參加抽獎活動的人數,得到統(tǒng)計表格如下:
 x 1 2 3 4 5 6 7
 y 510 14 15 17 
經過進一步統(tǒng)計分析,發(fā)現y與x具有線性相關關系.
(Ⅰ)根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$;
(Ⅱ)若該分店此次抽獎活動自開業(yè)始,持續(xù)10天,參加抽獎的每位顧客抽到一等獎(價值200元獎品)的概率為$\frac{1}{7}$,抽到二等獎(價值100元獎品)的概率為$\frac{2}{7}$,抽到三等獎(價值10元獎品)的概率為$\frac{4}{7}$,試估計該分店在此次抽獎活動結束時送出多少元獎品?
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.如圖是我國2009年至2015年生活垃圾無害化處理量(單位:億噸)的折線圖
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關系,請用相關系數加以說明;
(Ⅱ)建立y關于t的回歸方程(系數精確到0.01),預測2017年我國生活垃圾無害化處理量.
參考數據:$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{{\sum_{i=1}^{7}{(y}_{i}-\overline{y})}^{2}}$=0.55,$\sqrt{7}$≈2.646.
參考公式:相關系數r=$\frac{\sum_{i=1}^{n}{(t}_{i}-\overline{t}){(y}_{i}-\overline{y})}{\sqrt{{\sum_{i=1}^{n}{(t}_{i}-\overline{t})}^{2}{\sum_{i=1}^{n}{(y}_{i}-\overline{y})}^{2}}}$=$\frac{n{{\sum_{i=1}^{n}t}_{i}y}_{i}-{\sum_{i=1}^{n}t}_{i}•{\sum_{i=1}^{n}y}_{i}}{n\sqrt{{\sum_{i=1}^{n}{(t}_{i}-\overline{t})}^{2}{\sum_{i=1}^{n}{(y}_{i}-\overline{y})}^{2}}}$
回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}$t中斜率和截距的最小二乘估計公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{(t}_{i}-\overline{t}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(t}_{i}-\overline{t})}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$t.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知a,b,c分別為△ABC的內角A,B,C所對的邊,且3a2+3b2-c2=4ab,則△ABC( 。
A.可能為銳角三角形B.一定不是銳角三角形
C.一定為鈍角三角形D.不可能為鈍角三角形

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知圓C:(x-3)2+(y-t)2=t2(t≠0,t∈R),A(-3,0),B(3,2t),F(2,0).
(1)若過A傾斜角為60°的直線與圓C相切,求t的值;
(2)過F且傾斜角不為0的直線l與圓C相切,l與AB交于M,求點M的軌跡方程.

查看答案和解析>>

同步練習冊答案