【題目】已知函數(shù)

(1) 若,求的圖象在處的切線方程;

(2)若在定義域上是單調(diào)函數(shù),求的取值范圍;

(3)若存在兩個(gè)極值點(diǎn),求證:

【答案】(1);(2);(3)證明過(guò)程如解析所示

【解析】試題分析:(1)當(dāng)a=1, ,求導(dǎo)得,代入x=1,求得切點(diǎn)和斜率,用點(diǎn)斜率式可求得切線方程。(2),x>0,要使的函數(shù)f(x)單調(diào),所以恒成立,分離參數(shù)得,只需求右邊函數(shù)在x>0上的最大值。(3),函數(shù)f(x)有兩個(gè)極值點(diǎn),可知的兩根,且是正數(shù)根,所以,解得,另 >0,所以。 ,又由于 ,即證。

試題解析:(1)當(dāng),求導(dǎo)得, 切線方程為

(2) 依題意有上恒成立,即上恒成立,顯然不可能恒成立,

(3)由,即的兩根

,

由已知

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的偶函數(shù),其導(dǎo)函數(shù)為,若對(duì)任意的實(shí)數(shù),都有恒成立,則使成立的實(shí)數(shù)的取值范圍為( 。

A. B. (﹣∞,﹣1)∪(1,+∞)

C. (﹣1,1) D. (﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一位網(wǎng)民在網(wǎng)上光顧某網(wǎng)店,經(jīng)過(guò)一番瀏覽后,對(duì)該店鋪中的A,B,C三種商品有購(gòu)買意向.已知該網(wǎng)民購(gòu)買A種商品的概率為 ,購(gòu)買B種商品的槪率為 ,購(gòu)買C種商品的概率為 .假設(shè)該網(wǎng)民是否購(gòu)買這三種商品相互獨(dú)立
(1)求該網(wǎng)民至少購(gòu)買2種商品的概率;
(2)用隨機(jī)變量η表示該網(wǎng)民購(gòu)買商品的種數(shù),求η的槪率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知斜三棱柱, , 在底面上的射影恰為的中點(diǎn),且.

(1)求證: 平面;

(2)求到平面的距離;

(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù):①f(x)=3|x| , ②f(x)=x3 , ③f(x)=ln ,④f(x)= ,⑤f(x)=﹣x2+1中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減函數(shù)為 . (寫(xiě)出符合要求的所有函數(shù)的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,其前項(xiàng)和為,且

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)有正整數(shù),使得成等差數(shù)列,求的值;

(3)設(shè),對(duì)于給定的,求三個(gè)數(shù)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過(guò)點(diǎn)D作AC的平行線DE,交BA的延長(zhǎng)線于點(diǎn)E.求證:

(1)△ABC≌△DCB;
(2)DEDC=AEBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對(duì)首次消費(fèi)的顧客,按/次收費(fèi), 并注冊(cè)成為會(huì)員, 對(duì)會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:

消費(fèi)次第






收費(fèi)比例






該公司從注冊(cè)的會(huì)員中, 隨機(jī)抽取了位進(jìn)行統(tǒng)計(jì), 得到統(tǒng)計(jì)數(shù)據(jù)如下:

消費(fèi)次第






頻數(shù)






假設(shè)汽車美容一次, 公司成本為, 根據(jù)所給數(shù)據(jù), 解答下列問(wèn)題:

1)估計(jì)該公司一位會(huì)員至少消費(fèi)兩次的概率;

2)某會(huì)員僅消費(fèi)兩次, 求這兩次消費(fèi)中, 公司獲得的平均利潤(rùn);

3)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率, 設(shè)該公司為一位會(huì)員服務(wù)的平均利潤(rùn)為, 的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體中, 與平面及平面所成角分別為, , 分別為的中點(diǎn),且.

(1)求證: 平面;

(2)求二面角的平面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案